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employed in their original workplace, though not necessarily performing the same tasks, and the
aggregate manufacturing decline is solely driven by fewer new jobs for young labor market
entrants. This enhanced job stability for insiders comes at the cost of lower wages. The negative
impact of robots on individual earnings arises mainly for medium-skilled workers in machine-
operating occupations, while high-skilled managers gain. In the aggregate, robots raise labor
productivity but not wages. Thereby they contribute to the decline of the labor income share.
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1 Introduction

The fear of an imminent wave of technological unemployment is again one of the domi-

nant economic memes of our time. The popular narrative often goes as follows (see, e.g.,

Ford 2015; Broy and Precht 2017): As software and artificial intelligence advance, pro-

duction processes (especially in manufacturing) become increasingly automated. Work-

ers can be replaced by new and smarter machines – industrial robots, in particular – which

are capable of performing the tasks formerly carried out by humans faster and more ef-

ficiently. The robots will therefore make millions of workers redundant, especially those

with low and medium qualification, and re-shape society in a fundamental way.

Various studies have indeed argued that technological progress has contributed to

rising wage inequality and labor market polarization in advanced countries during the

past decades (e.g., Autor et al. 2003; Autor and Dorn 2013; Goos et al. 2014), and esti-

mates have been suggested how many occupations are at risk of being automated given

the type of work they usually conduct.1 Until very recently, however, there has been

little systematic analysis about the general equilibrium impact of robots and other new

technologies, after workers have adjusted to the induced wage and price responses.

Acemoglu and Restrepo (2017a,b, 2016), henceforth labelled AR, show that this equilib-

rium impact hinges on the trade-off between two forces, dubbed the displacement and the

productivity effect. Robots directly substitute workers when holding output and prices

constant, but the resulting cost reductions also increase product and labor demand in the

industries where they are installed. Moreover, workers can be soaked up by different

industries, and specialize in new tasks complementary to robots. The ultimate impact of

robots is, therefore, an empirical question which AR address with a local labor market ap-

proach for the United States (1993-2014). It turns out that the displacement effect seems

to dominate, since AR find pervasive negative responses to robot exposure in the US.

Quantitatively, their results imply that one additional robot reduces total employment

by around 3–6 jobs. It also reduces average equilibrium wages for almost all groups.

In this paper we focus on Germany. We start with a similar local labor market ap-

proach as in AR, and then turn to a more detailed analysis at the individual worker-level.

Using linked employer-employee data, we trace employment biographies and earnings

profiles of roughly 1 million workers with a varying degree of robot exposure over time.

1Frey and Osborne (2017) classify occupations based on their average task profiles and estimate that
it would be technologically feasible to replace almost 50 % of all workers in the US by machines. The
World Development Report (2016) arrives at a similar conclusion. Arntz et al. (2017) account for task
specialization within occupations and put a substantially smaller share of jobs (only 9 %) at risk.
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This allows us to analyze if robots (and other technology and trade shocks) have causally

affected the risk of job displacement and wages for different types of individuals. We

also study if workers have switched jobs within and across establishments, industries,

and occupations in view of the robots, and how robots have affected young people and

returnees from unemployment in their decisions where to (re-)enter the job market. This

analysis is, to the best of our knowledge, the first in the literature to address comprehen-

sively how individual workers were affected by, and responded to, the rise of the robots.

(a) Industrial robots. (b) Manufacturing employment.

Figure 1: Robot installations and manufacturing employment share, 1994-2014

Notes: Robot data from the International Federation of Robotics (IFR). Europe = Germany, France, Italy, Spain, Finland, Sweden, UK. Employment data from the Establishment
History Panel (BHP) for Germany, from the Bureau of Labor Statistics (BLS) for the US, and from EUKLEMS for the remaining European countries (for Spain, Italy and UK,
employment data is only available from 1995 on. Numbers for 1994 are imputed using average employment growth rates per country from 1995 to 2014).

Germany is an interesting case to consider when it comes to the equilibrium effects of

robots. This is for, at least, three reasons. First, robots are much more prevalent in Ger-

many than in the United States and elsewhere outside Asia. Figure 1a shows that almost

two industrial robots were installed per thousand workers in 1994, more than twice as

many than in the European average and four times as many than in the US. Usage almost

quadrupled over time in Germany, and now stands at 7.6 robots per thousand workers

compared to only 2.7 and 1.6, respectively. But despite the fact that there are many more

robots around, Germany is still among the world’s major manufacturing powerhouses

with an exceptionally large employment share. It ranges around 25% in 2014, compared

to less than 9% in the US, and has declined less dramatically during the last 25 years (see

Figure 1b). Our analysis will therefore elicit the causal effect of robots in a context with

many more manufacturing jobs per capita that could potentially be replaced, but where

robot usage itself is already more pervasive and matured.
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Second, Germany is not only a heavy user but also an important engineer of industrial

robots. The "robotics world rankings" list 8 Japanese firms among the ten largest produc-

ers in the world; the remaining two (Kuka and ABB) have German origin and mostly

produce in Germany. Among the twenty largest firms, five are originally German and

only one (Omron) is from the US. This opens up a new labor market channel, namely

direct job and wage gains in the robotic industry from increasing demand for robots, that

may potentially be more relevant for Germany than for other countries except Japan.

The third reason to focus on Germany is practical. We merge detailed German labor

market data with the same data on industrial robots that is also used by AR and in the

pioneering study by Graetz and Michaels (2016, 2017) who exploit industry-level varia-

tion across countries. It comes from the International Federation of Robotics (IFR) and

reports the stock of industrial robots installed in different industries and countries over

the period 1994-2014. Unlike for the US, that data is available for Germany over the entire

observation period, thus allowing for more accurate measurement of robot exposure.2

Main findings. Our local labor market analysis reveals substantial differences in how

Germany has responded to the rise of the robots. In particular, there is no evidence for

negative total employment effects like in the US. The raw correlation between robots and

local employment growth is even positive, but this is strongly driven by the automobile

industry which is highly spatially concentrated and has by far the most industrial robots

(see Section 2). Once local industry structures and demographics are taken into account,

we find no effect of robots on total employment, neither in simple ordinary least square

(OLS) regressions nor when using robot exposure of other countries as an instrument.3

Although robots do not affect total employment, they do have strongly negative im-

pacts on manufacturing employment in Germany. We calculate that one additional robot

leads to two manufacturing jobs less on average. This implies that roughly 275,000 full-

time manufacturing jobs were destroyed by robots in the period 1994–2014. But those

sizable losses are fully offset by job gains outside manufacturing. In other words, robots

have strongly changed the composition of employment by driving the decline of manu-

facturing and the rise of service jobs which is illustrated in Figure 1b above. We calculate

2The robot data for the US is only broken down at the industry-level from 2004 onwards, so that AR
have to construct US robot exposures 1993-2004 based on the distribution of robots across industries as
observed in Europe. For Germany, no such imputation is necessary.

3This instrumental variable (IV) strategy follows Autor et al. (2013) and purges potential unobserved
Germany-specific shocks that simultaneously affect robot adoption and employment outcomes across in-
dustries. See Section 3.3 for a detailed discussion.
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that robots were responsible for almost 23% of this overall decline. But they have not de-

stroyed jobs in the aggregate during the observation period, although their impacts have

become somewhat more adverse to workers over time.

These aggregate empirical findings raise the question how and through which chan-

nels robots have affected single workers. To shed light on this issue, we turn to our novel

approach that exploits detailed data for individual work biographies. We find – quite sur-

prisingly – that workers from more robot-exposed industries have indeed a substantially

higher probability to remain employed. In fact, they are even more likely to keep a job

in their original workplace, i.e., robot exposure has increased job stability for them. The

negative equilibrium effect of robots on aggregate manufacturing employment is there-

fore not brought about by direct displacements of incumbent manufacturing workers. It

is instead driven by smaller flows of labor market entrants into more robot-exposed in-

dustries. Put differently, robots do not destroy existing manufacturing jobs in Germany,

but they induce manufacturing firms to create fewer new jobs for young people.

What effects do robots have on wages and earnings? We find considerable heterogene-

ity at the individual level. Robot exposure causes notable on-the-job earnings gains for

high-skilled workers, especially in scientific and management positions. But for low- and

especially for medium-skilled manufacturing workers we find sizable negative impacts,

particularly in machine-operating occupations. As we discuss in more detail below, it

seems plausible that those workers (or unions and work councils on their behalf) have

accepted, in view of the threat posed by robots, lower wages in return for maintained

job security. This hypothesis is consistent with the empirical pattern that robots have

negative wage but positive individual employment effects for these groups. At the ag-

gregate level we find that robots enhance average productivity in the local labor market.

This is consistent with the view that robots complement humans at the workplace and

make them more productive. But there is no such impulse of robots on average wages

or other labor income proxies, while total output net of wage costs is positively affected.

The new technology therefore seems to benefit mostly the owners of capital and profit

claimants, but not labor at large, thus adding to the recently documented fall of the labor

share (Autor et al. 2017; Kehrig and Vincent 2017).

We conduct a battery of robustness checks and specification tests, including instru-

mental variable estimation, placebo regressions, sample splits, dropping of outliers, and

so on. Most importantly, we disentangle another major economic shock that has occurred
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parallel to the robot ascension, namely rising international trade exposure4, and we also

consider the adoption of information and communication technologies (ICT) across in-

dustries as another form of technological change.

Related literature. Our article contributes to the new, developing literature on the labor

market consequences of automation and robots (Acemoglu and Restrepo 2017a; Graetz

and Michaels 2016). Like these papers, we look at the equilibrium impacts at the local

and industry level. We extend this literature and present novel evidence by studying

the impact on the employment and earnings trajectories of individual workers in the

medium- and long-run. It allows us to better quantify the effects across different worker

skill groups. This reveals that the impact on high-skilled workers was positive, while

robots reduced wages for low- and medium-skilled workers. This is consistent that the

increased use of industrial robots represent skill-biased technological change. By focusing on

the individual worker-level, we also shed light on the important question how workers

adjust by moving across industries, occupations, and establishments.

Our paper is more generally related to the large literature on the labor market effects

of skill-biased technological change followoing Katz and Murphy (1992) (see the Hand-

book chapter by Acemoglu and Autor 2011). A large strand of literature has studied the

labor market effects of information and communication technology (Autor et al. 2003,

Michaels et al. 2014, Akerman et al. 2015). Our paper is also connected to a group of pa-

pers investigating variation in labor demand conditions and skill-bias across local labor

markets (Moretti 2011, 2013). Similar as in the paper by Autor et al. (2015), our research

design aims to disentangle trade and technology shocks. Relatedly, in a recent paper,

Koren and Csillag (2017) show how the import of advanced machinery propagates skill-

biased technical change.

Finally, we investigate the aggregate impacts on productivity and wages and thereby

relate to the recent literature on the fall of the labor share (Autor et al. 2017; Kehrig and

Vincent 2017). Our findings imply that the increased use of industrial robots contribute

to the fall in the labor share.
4In a seminal paper, Autor et al. (2013) find that American commuting zones more strongly exposed

to Chinese imports have experienced major job and wage losses. AR show that different industries are
exposed to robots than to Chinese imports, and that both have independently fueled losses in the United
States. For Germany, Dauth et al. (2014, 2017) argue that import shocks from China and Eastern Europe
had only smaller adverse effects, which were more than offset by gains from rising export opportunities.
Our analysis is consistent with their results, i.e., we also find positive effects from net export exposure
on employment and wages. The results for robots remain unchanged, however, when taking those trade
shocks into account, and we find that robots have more pronounced labor market effects than ICT.
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The rest of this paper is organized as follows. In Section 2 we introduce our data and

give a descriptive overview. Section 3 describes our empirical approaches, and Section 4

studies the impact of robots on equilibrium employment across local labor markets. The

impact on individual workers is discussed in Section 5. Section 6 turns to the aggregate

impact on productivity and wages, and Section 7 concludes.

2 Data and descriptive overview
2.1 Robot data

Our main data set comes from the International Federation of Robotics (IFR). It is the

same data source as in AR and Graetz and Michaels (2016, 2017), and reports the stock of

robots for 50 countries over the period from 1994 to 2014.5 It is based on yearly surveys

of robot suppliers, and captures around 90 percent of the world market. The information

is broken down at the industry level, but data availability differs across countries.6

For Germany coverage is comprehensive, and we arrange the IFR data to match the

official industrial classification scheme of the German labor market.7 This allows us

to differentiate 53 manufacturing industries for which we observe the number of in-

stalled robots over the entire observation period. We also observe robots in 19 non-

manufacturing industries from 1998 onwards. Appendix Table A.1 summarizes the infor-

mation, and Figure 2 illustrates the change in the number of robots per thousand workers

separately for the two decades in all 72 industries.

By far the strongest increase can be observed in the different branches of the auto-

mobile industry (motor vehicles, auto bodies and parts), which is a large and important

sector in the German economy. Here, 60–100 additional robots are installed per thou-

sand workers in 2014 compared to 1994. This dramatic increase took place mostly dur-

ing the first, but continued in the second decade. Other industries that became vastly

more robot-intensive over time include furniture, domestic appliances, and leather. On

the other side of the spectrum we find cases where robot usage has hardly changed, and
5A robot in this data is defined as an "automatically controlled, re-programmable, and multipurpose

machine" (International Federation of Robotics, 2016). As explained in more detail by AR, this means that
robots are "fully autonomous machines that do not need a human operator and that can be programmed
to perform several manual tasks such as welding, painting, assembling, handling materials, or packag-
ing." Single-purpose machines such as elevators or transportation bands are, by contrast, no robots in this
definition, as they cannot be reprogrammed to perform other tasks, and/or require a human operator.

6As Graetz and Michaels (2016, 2017), we do not use the IFR industries all other manufacturing, all other
non-manufacturing, and unspecified. Those categories cover less than 5% of the total robot stock in Germany.

7The IFR data are reported according to ISIC Rev 4, and we adopt an official cross-walk by Eurostat to
re-classify them to the German WZ 1993 scheme which mostly corresponds to NACE Rev 1. More details
about the industry cross-walk are reported in Appendix A. Also see Section 4.4.4. for robustness checks.
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sometimes (e.g. in the watches and clocks industry) it even decreased over time. Robot

usage across non-manufacturing industries is shown in the bottom of the figure. It is

substantially lower than in manufacturing.

2.2 Labor market data

Our second source are administrative German labor market data provided by the Insti-

tute for Employment Research (IAB) at the German Federal Employment Agency.

2.2.1 Individual workers

In the individual-level analysis we use the Integrated Employment Biographies (IEB).

This is a longitudinal linked employer-employee data set, which is allows to follow single

workers within and across establishments and occupations over time.8

We focus on incumbent manufacturing workers with strong labor force attachment.

In particular, we identify all individuals age 22 to 44 in the base year 1994, who are em-

ployed full-time in a manufacturing industry, earned more than the marginal-job thresh-

old and had a job tenure for at least two years. For those roughly 1 million workers we

then build a balanced annual panel which captures their work biographies over the sub-

sequent twenty years.9 In a complementary short-run approach, we split the observation

period into two time windows, and construct analogous work biographies over ten years

for all workers (age 22-54) starting out in manufacturing in 1994 or 2004, respectively.

The resulting annual panel data sets assign every worker to an establishment, and

therefore to a 3-digit industry and location where the respective employer is affiliated,

pertaining to the main job held on June 30 in the base year. We also observe the work-

ers’ occupations, following the standard classification of occupations in its version of

1988 (KldB 1988). Whenever workers have non-employment spells in their job biogra-

phies, this may constitute long-term unemployment, early retirement, or labor market

exit, all of which are endogenous labor market outcomes. When we construct our de-

pendent variables, we treat those spells as periods with zero earnings and employment,

and assign the respective worker to the last recorded employer, occupation, industry and

location until he or she takes up a new job elsewhere.

8We work with a 30% random sample of the IEB V12.00.00 - 2015.09.15., which covers the universe of
all workers in the German labor market except for civil servants and the self-employed. It is described in
detail in the papers by Card et al. (2013) and Oberschachtsiek et al. (2009).

9The age limit of 44 years is chosen to rule out that workers in the sample reach the regular retirement
age (65 years) during the sample period. We also eliminate those who died or moved to a different country.
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Figure 2: Industry-level distribution of robots

Notes: The figure displays the change in the number of robots per thousand workers by WZ 1993 industries (German Classification of Economic Activities, Edition 1993), for the
two subperiods 1994-2004 and 2004-2014. Data for non-manufacturing industries in the first decade are only from 1998-2004.
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We also observe the detailed profile of labor income for every worker in the sample.

As the wage information is subject to right-censoring at the social security contribution

ceiling, we apply the imputation procedure by Card et al. (2013). Moreover, we convert

all earnings into constant 2010- eusing the consumer price index of the Bundesbank.

Appendix Table A.2 reports some descriptive statistics. Panel A shows that the aver-

age manufacturing worker was employed on 5,959 out of 7,305 possible days over twenty

years, and started off with a daily wage of 120e . He or she has experienced a real earn-

ings loss, because cumulated earnings over the subsequent 20-year time window only

add up to 19.25 times the base year value on average. These trends are similar in the

two separate 10-year-time windows. Panel B reports some standard individual charac-

teristics of the manufacturing workers in our sample. Notice that roughly 9% hold a

university-degree (high-skilled), while more than 75% have a completed apprenticeship

(medium-skilled), and 15% have no formal qualification (low-skilled).

2.2.2 Local labor markets

For the local labor market analysis we work with the Establishment History Panel (BHP)

by the IAB. It is an annual panel of the aggregated registry data of all employees of

all German establishments with at least one employee, pertaining to the universe of all

employees in the German labor market subject to social security.10 We aggregate this

data to the local industry level and distinguish 402 local labor markets (Landkreise and

kreisefreie Staedte), which correspond to the European NUTS3-level and are comparable

to counties in the US. The data encompass both the former West and East Germany. For

every district and for every year between 1994 and 2014, we have detailed information

about the level and the composition of employment (in full-time equivalents), including

the industry structure and the characteristics (age, gender, qualification, etc.) of the local

workforces. Some descriptive statistics are reported in Appendix Table A.3.

We merge additional data from the Federal Statistical Office, which breaks down na-

tional accounts at the local level. This includes population size, total production (GDP),

various income and productivity measures, unemployment rates, and so on, for every

district and every year during the observation period.11

10Civil servants and the self-employed are exempted from the social security system, and are therefore
the only groups not covered by this data. A detailed description can be found in Spengler (2008).

11In some cases those data are not available for the entire observation period. See Section 6.
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2.3 Descriptive overview for robot exposure

The average manufacturing worker in our sample has experienced a robot exposure

equal to ∆robotsj = 16.98 (see panel C in Appendix Table A.2). This exposure equals

the change in the number of installed robots per thousand workers over the period 1994-

2014 in the initial industry, where we record his or her job in the base year. Notice the

large variation across individuals. The worker at the 75th percentile has seen an increase

in exposure that is almost three times larger than for the worker at the 25th percentile

(9.6 versus 3.4 additional robots per thousand workers), and the comparison of the 90th

and the 10th is even more dramatic (77.1 versus -1,7). This reflects the extremely skewed

distribution of robot installation across industries that is illustrated in Figure 2 above.

We also construct a measure of local robot exposure for every region r, namely a

weighted average of ∆robotsj , with weights given by local over national employment

in industry j in the base year, and normalized by total local employment:

∆robotsr =
J∑

j=1

(
empjr
empj

· ∆robotsj
empr

)
with J = 72. (1)

Some descriptives are reported in Appendix Table A.3, panel C. On average, local ex-

posure has increased by 4.6 robots per thousand workers, but there is again considerable

variation which reflects the regions’ industrial specialization patterns.

The map in panel A of Figure 3 shows that robot exposure has dramatically increased

mainly in a few local labor markets. The two most extreme outliers are Wolfsburg and

Dingolfing-Landau, which are essentially factory towns for Volkswagen and BMW, re-

spectively, where exposure has increased by up to 78 robots per thousand workers. In

our empirical analysis below we will pay attention to the special role of the automobile

industry, and to these regions where automobile production is strongly concentrated. To

make the variation better visible, we arrange the data in ten decile bins in panel B. This

map indicates that robot exposure in East Germany tends to be lower, which reflects the

smaller overall manufacturing share there. Outside the upper decile of local exposure,

we observe notable differences mostly within West Germany. Values range from close

to zero in some places in the North up to 7.6 additional robots per thousand workers in

other local labor markets, a variation that is considerably stronger than in the US.
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(a) Local robot exposure (20 equal intervals) (b) Local robot exposure (10 deciles)

Figure 3: Region-level exposure of robots, trade, and ICT.

Notes: The maps displays the regional distribution of the change in the exposure of robots between 1994 and 2014 on the level of 402 German local labor markets. The colors in
Panel A represent twenty equally sized percentile groups of robot exposure. In Panel B the colors represent ten equally sized decile groups.

2.4 Trade and ICT exposure

In our empirical analysis we disentangle robot exposure from two other major economic

shocks that occurred since the beginning of the 1990s in Germany. First, we consider

rising international trade with China and Eastern Europe. The idea is that some man-

ufacturing branches saw strongly rising import penetration as China and Eastern Eu-

rope developed a comparative advantage after their sudden rises in the world economy,

while for other branches those new markets in "the East" primarily meant new oppor-

tunities to export. Second, we consider investments in information and communication

technologies (ICT) as another distinct form of technological change. Similarly to robots,

ICT equipment may also replace the tasks formerly carried out by some humans, while

complementing the productivity of others, thus leading to heterogeneous wage and em-

ployment effects for different individuals.

For the measurement of trade exposure we closely follow Dauth et al. (2017), who

compute the increase in German net exports vis-a-vis China and 21 Eastern European

countries over the period 1993-2014 for every manufacturing industry j using COM-

TRADE data, normalized by the initial wage bill to account for industry size. To measure

12



(a) Robots versus trade. (b) Robots versus ICT.

Figure 4: Region-level exposure of robots, trade, and ICT.

Notes: The figures contrast the change in the exposure of robots and trade (Panel A), and that of robots and ICT (Panel B) between 1994 and 2014 on the level of 402 German local
labor markets. Robot data from the International Federation of Robotics (IFR). Trade data from the United Nations Commodity Trade Statistics Database (COMTRADE). Data
on ICT equipment from EUKLEMS. Region-level exposure is calculated from the available (national) industry-level exposure and the region’s initial distribution of employment
across industries as well as its share in national industry employment.

ICT exposure, we rely on information about installed equipment at the industry-level as

provided by EUKLEMS. It is defined as the change in real gross fixed capital formation

volume per worker for computing and communications equipment from 1994-2014.12

In Appendix Table A.1 we report the trade and ICT exposures for all industries.13 The

correlation of robot and net export exposure across industries is mildly negative (−0.09).

Although the automobile industry stands out as a strongly export-oriented branch with

high robot installations, we generally find that import-competing industries tended to

install slightly more robots. For robots and ICT the correlation is small (0.04), mostly re-

flecting the fact that robots are pervasive in manufacturing while ICT investments have

been stronger in the more communication-intensive services. The correlation between

ICT and trade exposure is also small (0.05). More generally, this suggests that we capture

three types of industry-shocks in our empirical analysis that have been largely orthogo-

nal. In other words, we find that different industries have been affected by robots, trade

and ICT, respectively, so that workers also perceived differential individual exposures to

those shocks given their initial industry affiliations.

Finally, for trade and ICT we can also construct regional exposure measures analogous

to (1). In Figure 4 we depict scatter plots of local robot and trade/ICT exposures. At the

12We have also experimented with the alternative measure of ICT capital services provided by EUK-
LEMS and used in Michaels et al. (2014). We prefer the equipment measure, however, since capital services
involve information on rental prices which necessitate assumptions on the rates of return of capital stock.

13Notice that trade exposure is not available for service industries, since the COMTRADE database is
confined to manufacturing only. It is possible to construct broader trade exposure measures that encom-
pass services, see Dauth et al. (2016), but we stick to the simpler approach here.

13



regional level, the correlations tend to be opposite to what we find at the industry-level.

But this is strongly driven by the few automobile regions, which are strongly export- and

robot-oriented but have installed little ICT equipment owing to their low service shares.

Those correlations become substantially smaller once we eliminate the regional outliers

or condition on the local manufacturing shares.

3 Estimation approach

In this section we describe our empirical approaches, discuss identification issues and

the instrumental variable strategy, and present results for the first-stage.

3.1 Worker-level analysis

We start with our novel worker-level analysis. For each worker i starting out in a man-

ufacturing industry in 1994, we add up all days in employment and all labor earnings

over the subsequent twenty years, irrespective of where they accrued, and divide them

by the respective base-year value. We then regress this (normalized) cumulated individ-

ual labor market outcome Yij on the increases in the number of installed robots in the

worker’s initial 3-digit industry j during the respective time period:

Yij = α · x′ij + β1 ·∆robotsj + φREG(i) + φJ(j) + εij (2)

In the vector x′ij we include standard worker-level controls, namely dummies for gen-

der, foreign nationality, three skill categories, three tenure categories, two age and six

plant size groups. We also include dummies φJ(j) for four broad manufacturing industry

groups, and φREG(i) for Federal States. We cluster standard errors by industry × state.14

The main idea behind this approach is that the workers’ initial industry affiliations

are orthogonal to the subsequent rising robot exposure. In other words, we assume that

workers have not systematically sorted into particular industries prior to the base year

in anticipation of the future technology trends. The empirical model (2) then uncovers

the long-run impact of this technology shock in the initial industry that persists in the

workers’ biographies even after they may have adapted by switching to different jobs.15

Afterwards we decompose Yij into several additive parts, and study if rising robot

14In the analogous short-run approach we follow workers only for ten years, and stack the two time
periods while adding a dummy to differentiate the two decades.

15A similar approach has been developed by Autor et al. (2014) and is also used in Dauth et al. (2016) to
study the worker-level impacts of trade shocks.
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exposure has led to systematic job mobility. More specifically, we start with the industry

dimension and ask if robot exposure causes job switches to other firms within the original

industry, to a different manufacturing industry, or out of the manufacturing sector alto-

gether. Similarly, we analyze if robot exposure induces workers to switch occupations

within or across employers. This approach allows us to analyze if and how individual

manufacturing workers have adjusted to the rise of the robots.

Finally, we extend the specification and include the industry-level exposures to net

exports (from China and Eastern Europe) and ICT as introduced above,

Yij = α · x′ij + β1 ·∆robotsj + β2 ·∆tradej + β3 ·∆ICTj + φREG(i) + φJ(j) + εij, (3)

in order to disentangle the rise of the robots from other trade and technology shocks.

3.2 Local labor market approach

The aggregate approach stays as close as possible to AR, in order to facilitate a compar-

ison of results. Here we regress the change in a local outcome variable (such as total

employment, manufacturing employment, the employment-to-population ratio, output

per worker, etc.) over the period 1994-2014 on the contemporaneous local robot expo-

sure, ∆robotsr , as defined above in (1):

∆Yr = α · x′r + β1 ·∆robotsr + β2 ·∆trader + β3 ·∆ICTr + φREG(r) + εr (4)

In the vector x′r we control for standard demographic characteristics of the local work-

forces (such as age, gender, and qualification), and for the employment shares of nine

broadly defined industry groups as reported in Appendix Table A.3. Moreover, we add

four broad region dummies to purge the estimates of systematic regional differences, and

we add the local exposures to net exports and ICT in some specifications.

3.3 Identification strategy

3.3.1 Fixed effects specification

Some important identification issues arise in both empirical approaches. First, confound-

ing long-run trends could bias our results. In particular, some industries may have been

on a declining (or growing) trend well before the 1990s. When robot exposure started

to increase, this may not have causally affected workers, but the rising robot installa-

tions could also be symptoms of the previous industry-specific trajectories. To address
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this concern, we identify all effects in our individual-level analysis within broad indus-

try groups by adding the fixed effects φJ(j). Thereby we purge the estimates of long-run

differences across groups. Similarly, in the aggregate approach we identify the effect of

robot exposure conditional on local demographic characteristics and the regions’ broad

industrial structures. We also conduct placebo tests to analyze if past employment trends

predict future robot adoptions, and do not find such a correlation.

Second, one might worry about confounding region-specific trends, since the German

reunification and the associated economic changes took place just before the start of our

observation period. We therefore identify all effects within Federal States, or alternatively

add the broad location dummies, in order to filter out systematic regional differences.16

3.3.2 Instrumental variable estimation

Although these fixed effects purge certain trends already in OLS estimations, there may

still be the concern that the main coefficient β1 only captures the causal effect of robots

when there are no parallel unobservable shocks that simultaneously affect robot instal-

lations and labor market outcomes. To address this concern, we adopt an instrumental

variable approach similar as in AR, where robot installations across industries in other

high-income countries are used as an instrument for German robot exposure.

For the selection of the "instrument group" we focus on such countries where robot

data is available as comprehensively as for Germany. These are Spain, France, Italy, the

United Kingdom, Finland, Norway, and Sweden. We do not use Japan, even though

robot usage has increased even more heavily there than in Germany, because of major

re-classifications in the original IFR data.17 We also do not use North America (the US

and Canada), because the industry breakdown is only available from 2004 onwards.

We deflate the robot installations across industries j in each of those k = 7 countries

with German industry-level employment in j from 1984 to construct k instrumental vari-

ables for ∆robotsj . The instruments for local exposure, ∆robotsr, are analogous and also

use lagged employment figures from ten years prior to the base period.

The rationale for this instrument is that all countries were exposed to a similar world-

wide technology trend – the rise of the robots – but face potentially different domes-

tic (demand or supply) shocks, which do not directly affect robot installations or labor

16As a further robustness check we also exclude East Germany entirely and focus only on West German
manufacturing workers, but the results turn out to be very similar as in our baseline approach.

17Until 2000, Japan reported data on both multipurpose industrial robots and dedicated industrial
robots. After 2000, Japan’s data only covered multipurpose industrial robots, as it was already the case
for the other countries in the entire observation period (International Federation of Robotics, 2016).
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market outcomes in Germany. The instrument therefore purges unobserved Germany-

specific shocks and identifies the causal impact of robots on German labor market out-

comes. Moreover, by deflating with lagged employment, we avoid issues of reverse

causality, since those levels cannot be themselves affected by robots.

In the baseline specification of the two-stage least squares (2SLS) IV approach we use

all k instruments and estimate an over-identified model. In a robustness check, we also

aggregate the robot exposures of all k countries to build a single instrument, in which

case the 2SLS model is just identified. Finally, when including trade and ICT exposure

in the regressions, we also treat them as endogenous variables and construct analogous

instruments by using third-country exposures and lagged German employment levels.18

3.3.3 First-stage results

Figure 5 summarizes our first-stage results. Panels (a) and (b) pertain to the individual-

level analysis and plot the actual change in robot installations across industries against

the predicted change from the fitted values of our first-stage regression. As can be seen,

the instrument seems to be quite powerful as the industry-level pattern of robot usage in

other countries is a strong predictor for the pattern observed in Germany. This is true in a

basic specification of the first-stage regression where we only add demographic controls,

but also when we include the full set of controls as described in Appendix Table A.2.

Panels (c) and (d) analogously show the first-stage results for local robot exposure.

Both in a simple specification with broad location dummies only, and in the full specifi-

cation with all controls, we find that the pattern of robot installations in the instrument

countries is a strong predictor for robot exposure across German regions.

The figure already suggests that weak instrument bias is unlikely to be a major con-

cern. This is corroborated by the large F-Statistics for joint significance of the robot ex-

posure in other countries in the first-stage, which are well beyond the critical values

of 10 suggested by Stock et al. (2002). The Kleibergen-Paap rk LM statistics for weak

identification of the robot exposure also remain above their critical values, even in the

specifications with multiple endogenous variables.

18The rationale for the instrument for trade exposure follows the seminal approach by Autor et al. (2013)
and our specification closely follows Dauth et al. (2017). The instrument for ICT exposure is constructed
analogously to robot exposure, but Norway is not in the instrument group because of missing data.
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(a) Industry-level: only demographics (b) Industry-level: Full controls

(c) Region-level: Broad region dummies (d) Region-level: Full controls

(a) (b) (c) (d)

Kleibergen-Paap weak ID test 393.1 71.8 175.401 20.593
F-Statistic 360.1 574.0 199.602 1541.098

Notes: The figures visualize the correlations of our robot exposure measures and their fitted values from the first stage. Panels (a) and (b) pertain to the individual-level

approach and are based on 993,184 workers. First, both variables are residualized from demographics (Panel a), and from the instruments relating to the exposure to trade and

ICT and all control variables from Table 3 (Panel b). Then the residuals of the predicted robot exposure are classified into 100 percentiles. The dots represent the average values

of both residualized variables for each of the 100 bins. Panels (c) and (d) pertain to the local labor market approach and show the actual value of the local robot exposure

measure and its fitted value from the first stage for all 402 regions. Both variables are residualized from broad region dummies (Panel c), and from the instruments relating to

the exposure to trade and ICT and all control variables from Table 1 (Panel d).

Figure 5: First stage.
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4 The impact of robots on local labor markets

We now discuss our empirical findings. In this section, we start with the aggregate local

labor market approach, because we can directly compare our results for Germany with

those by AR for the United States. Afterwards we turn to our individual-level analysis,

which provides detailed evidence how single workers have responded to robot exposure.

4.1 Baseline results for total employment

Table 1 summarizes our key findings how robot exposure has affected total local em-

ployment growth, which we measure by the change in log total employment in region r

between 1994 and 2014.19 The upper panel reports the OLS results, and the lower panel

refers to the analogous IV estimations.

Table 1: Robot exposure and employment.

Dependent variable:
100 x Log-4 in total employment between 1994 and 2014

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: OLS

4 robots per 1000 workers 0.2324** 0.3637*** 0.0416 0.0332 0.0091 0.0065 -0.0005 -0.1025
(0.095) (0.106) (0.126) (0.125) (0.117) (0.116) (0.132) (0.172)

dummy, 1=robot producer -4.8877 -4.7980 -4.5733 -3.9931 -4.1504
(4.350) (4.369) (4.418) (4.652) (4.626)

4 net exports in 1000 eper worker 0.3374 0.3479 0.2375 0.2161
(0.220) (0.220) (0.242) (0.249)

4 ICT equipment in eper worker -0.0110 -0.0163 -0.0166
(0.016) (0.017) (0.017)

R2 0.432 0.439 0.541 0.543 0.545 0.546 0.625 0.623

Panel B: 2SLS

4 robots per 1000 workers 0.2410** 0.3845*** 0.0399 0.0344 -0.0398 -0.0054 -0.0058 -0.0848
(0.095) (0.105) (0.124) (0.124) (0.109) (0.112) (0.120) (0.150)

dummy, 1=robot producer -4.8847 -4.7046 -4.9525 -4.2004 -4.2992
(4.250) (4.332) (4.212) (4.467) (4.464)

4 net exports in 1000 eper worker 0.8197*** 0.7319** 0.6232* 0.5975
(0.293) (0.304) (0.370) (0.376)

4 ICT equipment in eper worker 0.0142 0.0046 0.0027
(0.014) (0.015) (0.014)

R2 0.432 0.439 0.541 0.543 0.540 0.537 0.618 0.617

Broad region dummies Yes Yes Yes Yes Yes Yes Yes Yes
Manufacturing share No Yes Yes Yes Yes Yes No No
Demographics No No Yes Yes Yes Yes Yes Yes
Broad industry shares No No No No No No Yes Yes
Exclude top auto regions No No No No No No No Yes

Notes: N = 402. All regressions include a constant. The control variables are measured in the base year and are constructed as the number of workers in a particular group

relative to total employment. Demographic controls contain % female, % foreign, % age ≥ 50, % medium skilled (percentage of workers with completed apprenticeship), and

% high skilled (percentage of workers with a university-degree). Industry shares cover the percentage of workers in nine broad industry groups (agriculture; food products;

consumer goods; industrial goods; capital goods; construction; maintenance, hotels and restaurants; education, social work, other organizations). Manufacturing includes the

manufacture of food products, consumer goods, industrial goods, and capital goods. Broad region dummies indicate if the region is located in the north, west, south, or east of

Germany. Column (8) drops the german regions with the highest automobile shares (Wolfsburg and Dingolfing-Landau). Standard errors clustered at the level of 50 aggregate

labour market regions in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.

19The complete results for all control variables are shown in Appendix Tables A.4 and A.5.
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Column 1 starts with a simple specification where the only additional controls are

the broad location dummies, which mainly filter out systematic differences between East

and West Germany. We find a positive coefficient for robot exposure both in the OLS

and in the IV estimation, i.e., regions with more robot installations tended to have higher

total employment growth. The positive effect becomes even stronger when we condi-

tion on the local manufacturing employment shares as in column 2. This reflects that

robots are mainly installed in manufacturing industries (see Figure 2), so that local robot

exposure correlates with the local manufacturing share, but the latter is negatively cor-

related with the outcome variable as job growth tends to be stronger in services. Once

we include standard demographic characteristics of the local workforces in the regres-

sions, however, we find that the coefficient for robot exposure shrinks by a factor of ten,

almost down to zero, and turns insignificant (see column 3). Robot installations covary

with other characteristics that are positively associated with local employment growth.

More specifically, the detailed results in Appendix Tables A.4 and A.5 show that growth

tends to be higher in regions with a larger share of highly educated, young and foreign

workers, all of which are also positively correlated with robot exposure. Once we control

for those omitted factors, we no longer find any significant impact of robots on total local

employment growth, neither in the OLS, nor in the IV estimation.

In column 4 we investigate direct labor market effects of robotic production. As argued

in the introduction, Germany is not only a heavy user but also an important engineer of

industrial robots. In Appendix Table A.6 we report the 20 largest robot producers ac-

cording to the IFR "robotics world rankings". Eight of those firms are based, or run major

facilities in Germany. We have contacted those firms to inquire about their activities, and

received consistent information about the location of headquarters for the five German

firms, and respectively, about the location of production within Germany for the three

remaining firms whose headquarters are registered in Switzerland or Austria. Detailed

information about the number of employees in those plants is unfortunately not avail-

able, but as a proxy we construct a dummy variable for those local labor markets which

host a major robotic production facility.20 The results in column 4 of Table 1 do not show

stronger growth in those locations; if anything, the effect is even negative. This finding

may simply be driven by the rough measurement of robotic production, or by the small

overall size of the robotic industry. But we tentatively conclude that direct employment

20These are the districts of Augsburg, Mannheim, Nuremberg, Bayreuth, Chemnitz, Ludwigsburg,
Fulda, Maerkischer Kreis, and Lahn-Dill-Kreis. See Appendix Table A.6.
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gains from the concentration of robotic production seem to be absent, possibly reflecting

the fact that robot production is itself not very labor-intensive.

Next, in column 5 we add local net export exposure with China and Eastern Europe

to the list of controls. As in Dauth et al. (2014, 2017) we find a positive impact on local

employment, which is highly significant in the IV approach where third-country trade

flows are now used as additional instruments. In other words, we corroborate their find-

ing that local labor markets with a more export-oriented industry structure exhibited

stronger subsequent growth. The coefficient for robot exposure decreases and even turns

negative in the lower panel. This reflects the positive correlation of local robot and trade

exposures, which is shown above in Figure 4. The coefficient for robots remains statisti-

cally indistinguishable from zero, however. Adding local ICT exposure, as in column 6,

does also not affect our main results. Moreover, we find that stronger local investments

in ICT do not seem to have notable employment effects per se, since the respective coef-

ficients are small and insignificant in both panels.

Our estimations have so far controlled for the overall local manufacturing shares in

the base year. But there may be more fine-grained industry trends within the manufac-

turing sector, which are correlated with employment outcomes and robot installations.

To address this issue, we now use the initial employment shares of nine industry groups

instead of the overall manufacturing share. Thereby we condition our estimates on more

detailed local employment compositions, which in turn purges the coefficients from pos-

sibly confounding industry trends. The results in column 7 remain very similar, however,

especially in the IV approach. Finally, we drop the two major outliers (Wolfsburg and

Dingolfing-Landau) where vastly more robots are installed than in any other German

region, because of their strong focus on automobile production (see Figure 3). Column 8

shows that our key results are not driven by those outliers. In particular, the coefficient

for robot exposure becomes stronger negative, but it remains insignificant.21

Summing up, our baseline results do not provide evidence for negative total employ-

ment effects of rising robot exposure like in the US.22 Once local workforce characteristics

and unobserved industry trends are taken into account, as in our benchmark specifica-

tion in column 7, we find a causal effect of robots on employment growth equal to zero.

We cannot decisively rule out that robots have an impact, as the standard errors for the

respective coefficient tend to be quite large. Still, our evidence does not support the claim

21Below we consider further robustness checks to shed light on the special role of the automobile sector.
22A detailed quantitative comparison of our results with those by AR is relegated to section 4.3. below.
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that robots have been major job killers in the German labor market, at least not during

the period 1994-2014. Moreover, we find that rising ICT exposure, which is another di-

mension of technological change, also does not have notable employment effects, while

rising export exposure indeed causes job gains across German local labor markets.

4.2 Manufacturing and non-manufacturing employment

In Table 2 we now distinguish the impact of robots on sectoral employment growth. More

specifically, while the outcome variable in column 1 is still total employment, we consider

manufacturing and non-manufacturing separately in columns 2 and 5, and in columns

3 and 4 we further differentiate the former into automobile and all other manufacturing

branches. For brevity, we only present results for the full IV specification (column 7 in

panel B of Table 1) from now on, and focus on the central coefficient for robot exposure.23

Panel A reports the results for overall local robot exposure. The coefficient in col-

umn 1 is the same as in Table 1 above, and the other columns show how this zero effect

comes about. Namely, we find a negative impact of robots on manufacturing employ-

ment growth, mainly but not only in the automobile sector, but a significantly positive

effect on non-manufacturing. Put differently, robots reduce the number of manufactur-

ing jobs in the local labor market, in the car industry and beyond, but this loss is fully

offset by additional jobs in the service or public sector (in non-manufacturing). Hence,

there is no effect of robots on the overall level of local employment, but on its composition.

In panel B we shed light on the special role of the car industry in a different way. We

differentiate robots installed in the automobile branch (motor vehicles, car bodies, and

car parts) from robots installed in all other industries, and calculate two corresponding

local exposure measures. The results for automobile robots turn out to be very similar

to the overall pattern from panel A. The robots in other industries also have no total

employment effects (see column 1), but their impact on employment compositions is

somewhat less clear. We even find some slightly positive effects on own-industry em-

ployment, but only at borderline significance levels. Overall, panel B suggests that the

automobile robots, which form the majority among all robots, are very important for the

understanding of the overall impact of this technology. But their counterparts in other

industries do not seem to have systematically different employment effects.

In panels C–E we differentiate the impact of robots on local employment of three dif-

ferent skill groups. The general pattern appears to be quite similar for all groups. That

23The detailed results are available upon request from the authors.
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Table 2: Manufacturing versus non-manufacturing employment.

Dependent variable:
100 x Log-4 in employment between 1994 and 2014

(1) (2) (3) (4) (5)
Total Manuf. Manuf. auto Manuf. other Non-manuf.

Panel A: All robots

4 robots -0.0058 -0.3837** -3.4084*** -0.6525*** 0.4177**
(0.120) (0.152) (1.142) (0.210) (0.206)

Panel B: Robots in automotive and other sectors separately

4 robots in automotive -0.0187 -0.4139*** -3.5042*** -0.6862*** 0.4123*
(0.130) (0.143) (1.127) (0.201) (0.219)

4 robots in other sectors 0.8651 1.5587* -4.3114 1.3251* 0.8907
(0.635) (0.856) (5.765) (0.799) (0.610)

Estimates by skill group

Panel C: Low skilled

4 robots -0.0907 -0.7549** -1.3138 -0.3725 0.0658
(0.178) (0.315) (1.002) (0.265) (0.219)

Panel D: Medium skilled

4 robots -0.1528 -0.3346** -3.2693*** -0.3676* 0.1647
(0.115) (0.151) (1.197) (0.205) (0.158)

Panel E: High skilled

4 robots 0.3284 -0.1559 -1.5995 -0.0840 0.6287**
(0.248) (0.333) (0.976) (0.459) (0.245)

Panel F: Dependent variable
100 x4 in employment/population between 1994 and 2014

4 robots -0.0190 -0.0595** 0.0144 -0.0739*** 0.0405
(0.065) (0.027) (0.023) (0.027) (0.050)

Notes: N = 402 resp. N = 368 in column 3. The outcome variables are log-differences in employment between 1994 and 2014. Columns (1) to (7) display estimates for total

employment, employment in manufacturing, employment in manufacturing of motor vehicles, employment in manufacturing except motor vehicles, employment in

non-manufacturing, respectively. Panels C-E: Log-differences in employment are separately analyzed for low, medium, and high skilled individuals. In panel F the outcome

variables are constructed as the change in the employment to population ratio rather than the log-change in employment. All regressions include the full set of control variables

as in column (7) of Table 1, Panel B (2SLS). Standard errors clustered at the level of 50 aggregate labour market regions. Levels of significance: *** 1 %, ** 5 %, * 10 %.
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is, we find negative effects on manufacturing and positive effects on non-manufacturing

in all panels, but the magnitude and statistical significance of the estimators differ some-

what. The loss of manufacturing jobs is most visible for low- and medium-skilled work-

ers, while the job gains in non-manufacturing are clearest for high-skilled workers. The

combined total employment effects in column 1 are all insignificant, however. In other

words, we find no clear evidence that robots have destroyed jobs, not even for workers

without university education who may be most vulnerable to the threats of automation

by this technology. Still, the results in panels C–E already hint at distributional effects of

robots that we analyze in further detail below.

4.3 Quantitative benchmarking and comparison to the United States

Finally, in panel F of Table 2 we specify the outcome variable differently and consider

the change in the ratio of total employment-to-population in region r. This specification

in column 1 follows AR, which allows us to directly compare the results. Moreover, in

columns 2-5 we analogously compute the change in the ratio of local sectoral employ-

ment over population size in the local labor market over time.

For the United States, AR estimate that one more robot per thousand workers reduces

the employment-to-population ratio by 0.37 percentage points (see their Table 4, panel B,

column 4). Considering that the average employment-to-population ratio is 0.6 in the

US, this implies that one robot reduces the total number of jobs by 6.2 (= 0.37/100 ×

1000/0.6). Our analogous specification in column 1 of panel F in Table 2 reveals that

the marginal effect of robot exposure on the total employment-to-population (−0.0190)

is much weaker in Germany, in fact, it is statistically indistinguishable from zero. Hence,

as argued before, we find no evidence that robots cause overall job losses.

Yet, column 2 in panel F confirms that robots cause significant employment losses in

manufacturing, and we can use this point estimate for an analogous quantitative bench-

marking. In particular, we find that one more robot per thousand workers reduces the

manufacturing employment-to-population ratio by 0.0595 percentage points. Taking into

account that the average ratio at the beginning of our observation period is 0.2812, this

means that one more robot causes a loss of 2.12 (= 0.0595/100 × 1000/0.2812) manufac-

turing jobs.24 But this loss is fully offset by job gains outside of manufacturing.25

24Note that AR also find that robots have more adverse employment effects on manufacturing employ-
ment, see their Figure 10. Our estimate for the loss of manufacturing jobs (2.1 jobs per one robot) is there-
fore substantially smaller than the comparable number in the United States, which ranges well above 6.2.

25In panel F we find a large and positive coefficient in column 5, like in panel A, but the standard errors
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To put this number into perspective, consider that a total stock of 130,428 robots has

been installed in Germany over the period 1994–2014. A quick back-of-the-envelope cal-

culation thus suggests a loss of 276,507 manufacturing jobs. Bearing in mind that man-

ufacturing employment in Germany has declined by 1.2 million (from roughly 7 million

full-time equivalent jobs in 1994 to 5.8 million in 2014), see Figure 1B above, this means

that robots have been responsible for around 23% of this overall decline. This is quite a

sizable impact, given that robots are just one dimension of technological change that has

affected the manufacturing sector.26 But it is worth emphasizing again that robots do not

seem to have destroyed the total number of jobs but rather changed the composition of

employment in the German economy.

4.4 Robustness checks

We have conducted a battery of robustness checks. In this section we briefly discuss the

main insights, but relegate the detailed results to the Appendix.

4.4.1 The changing impact of robots over time

First, in Appendix Table A.7 we address timing issues. Instead of computing local em-

ployment growth rates over twenty years as in the baseline, we now split the observa-

tion period into two separate time windows (1994-2004 and 2004-2014). We then analo-

gously compute robot exposure and the change in log employment separately for the two

decades, and repeat the baseline specifications with all instrumental variables adjusted

accordingly. In panel A we stack the two decades while adding region x time interaction

terms, and panels B and C show results for the two periods separately. The first line in

each panel reports the overall employment effects, and the next lines consider the effect

on the three skill groups.

Most importantly, we find no effects of robots on overall employment growth in the

stacked model in panel A. The compositional effects are also similar, though somewhat

smaller, than in the baseline specification. For example, the negative impact of robots

on manufacturing jobs seems to be most strongly confined to the automobile industry in

this specification. Across skill groups there continue to be no job losses caused by robots

for low- and medium-skilled workers, and for high-skilled workers we now even find a

in this specification are somewhat too large to achieve statistical significance at conventional levels.
26The rise of international trade exposure with China and Eastern Eurpe, by contrast, has contributed

nothing to this decline; if anything, the impact of net export exposure on the manufacturing employment
share is even positive. See Dauth et al. (2017) for a detailed analysis. In the US, on the other hand, both
robots and Chinese imports seem to have fulled the manufacturing decline, see AR and Autor et al. (2014).
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positive overall effect solely driven by the non-manufacturing sector. By and large, we

conclude that the stacked short-run model in panel A of Appendix Table A.7 yields a

similar overall picture as the long-run model reported in Table 2.

Interestingly, Panels B and C suggest that there have been some changes in the im-

pact of robots on local employment over time, and in particular, that they have become

less friendly. In the first period (see panel B) we find no notable adverse employment

effects, and if anything, only a positive impact of robots on non-manufacturing employ-

ment for high-skilled workers. In the second period, however, negative effects dominate

the picture. As shown in the first line of panel C, there is even evidence for significant

overall job losses caused by robots during the period 2004-2014. Notice that this pattern

is not driven by the fact that more robots have been installed in the more recent years. If

anything, we can infer from Figure 2 that robot exposure increased by more during the

first decade. But the employment effects of those robots have apparently become worse,

especially for low- and medium-skilled workers.

4.4.2 Placebo test

In panel D of Appendix Table A.7 we conduct a placebo test to investigate if pre-trends

could bias our results. In particular, some manufacturing industries may have been on an

downward trajectory already prior to the base period. If those industries installed more

robots in order to save labor costs, we would expect to see a negative effect of robots on

manufacturing employment even in absence of a causal effect. The coefficients for robots

on manufacturing employment could then be biased downwards.

Our instrumental variable approach should already mitigate this concern, at least to

the extent that the instrument countries do not face the same trend. But to further address

this issue, we now regress lagged employment growth (1984-1994) on robot exposure

1994-2014, to check if past trends predict future robot installations across industries. The

results in panel D suggest that they do not. All coefficients are small and insignificant,

thus suggesting that our main findings are not driven by pre-trends.

4.4.3 Countries in the instrument group

Our baseline specification uses an instrument group consisting of seven countries (Spain,

France, Italy, the United Kingdom, Finland, Norway, and Sweden) which have been cho-

sen for the reason of comprehensive data availability. Panels A-C in Appendix Table A.8

show robustness checks regarding this instrumental variable specification.
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First, while we use robot installations in all seven countries as separate instruments in

an over-identified IV model (see Section 3.3), we now aggregate them to a single instru-

ment for robot exposure in Germany and repeat the estimation in a just-identified model.

The results are reported in panel A, and turn out to be similar to our baseline findings.

The exclusion restriction requires that robot installations, and the associated labor

market effects in the instrument countries, ought not have direct impacts on the Ger-

man labor market. Otherwise the instrument is not valid. One may worry that this

requirement could not be met for important and large instrument countries, with which

Germany is closely interconnected through various channels. France is the most obvious

candidate, and also the only country in the instrument group sharing a common border

with Germany. In panel B, we return to our previous over-identified IV model, but drop

France from the instrument group. In panel C we even go one step further, and drop all

countries from the Eurozone (i.e., France, Italy, Spain, and Finland) since shocks may be

more strongly correlated within the monetary union. The results in panels B and C are

very similar to our baseline findings, however.

4.4.4 Industries and regional specifications

Next we conduct a robustness check on the industry cross-walk that we needed to take

in order to merge the robotic data from the IFR with the official industrial classification

system in the German data. In our approach, described in Appendix A, we allocated the

original 25 ISIC Rev. 4 industries from the IFR to 72 German NACE Rev.1 industries. One

may argue that we have, thereby, artificially inflated the number of observations for our

empirical analysis. We therefore consider an alternative approach here, also explained

in greater detail in Appendix A, where we aggregate the German data up to the ISIC

level. We then repeat our estimations for this alternative classification system with fewer

industries, but find roughly similar (though somewhat less precisely estimated) effects

in panel D of Appendix Table A.8 as in our baseline.

Finally, we conduct robustness checks with respect to the regional dimension in our

data. We drop East Germany in panel E and focus only on the variation in robot exposure

and employment growth across West German local labor markets. And in panel F we

change the specification of φREG(r) and now include Federal State fixed effects instead of

the four broad location dummies. Our main results remain robust to those changes.
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5 Worker-level evidence

The analysis has so far investigated the equilibrium impact of robots in local labor mar-

kets. In this section, we shift our focus to the work biographies and earnings profiles

of individual manufacturing workers. This allows us to shed more light on the detailed

channels behind the equilibrium outcomes identified so far.

5.1 Individual employment outcomes

Table 3 reports our main results for the worker-level estimation (2). To recap, we regress

cumulated days in employment for the incumbent manufacturing worker i over the pe-

riod 1994-2014 on the contemporaneous robot exposure of industry j where worker iwas

initially employed in the base year. Starting from a simple regression in column 1, we

successively add further control variables until we reach a comprehensive specification

in column 5, which takes into account various observable individual characteristics, his

or her base year earnings as a proxy for unobservable ability, as well as controls pertain-

ing to the initial establishment, industry, and region of employment. In column 6 we

drop all workers from the automobile industry, the key outlier when it comes to robot

exposure. Panels A and B show the results for the OLS and IV estimation approach,

respectively, with third-country robot installations at the industry level as instruments.27

There is a consistent picture across all specifications, namely a positive effect of robots

on worker-level employment. In other words, more robot-exposed workers are em-

ployed on more days during the subsequent twenty years than comparable colleagues

from less exposed manufacturing industries. The effect becomes smaller when we con-

trol for initial plant size or broad industry groups, in order to purge possibly confounding

trends, but it always remains significant in the IV model. Moreover, in Appendix Table

A.11 we show that similar results emerge in the short-run approach where single workers

are followed only for ten years, and it seems to be mainly driven by the first decade.

Investigating those patterns further, we now separate where the additional employ-

ment time caused by robots occurs. Table 4 decomposes the cumulative days in employ-

ment into different additive parts.28 Panel A refers to the industry, and panel B to the

occupational dimension. Column 1 in both panels repeats the previous baseline specifi-

cation from Table 3 and the coefficients in columns 2–5 add up, by construction, to this

27In the main text we focus again on the central coefficients only, while relegating the detailed results to
Appendix Tables A.9 and A.10.

28For brevity we only show the IV results from now on.
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Table 3: Robot exposure and individual employment outcomes

Dependent variable:
Number of days employed, cumulated over full observation period following the base year

[A] OLS, period 1994-2014 (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 3.3602*** 2.1265*** 0.7573 0.6399* 0.6016 0.9988*
(0.856) (0.660) (0.579) (0.377) (0.369) (0.582)

∆ net exports / wagebill in % 0.8422*** 0.8541***
(0.125) (0.133)

∆ ICT equipment in eper worker 0.0323 0.0330
(0.029) (0.029)

R2 0.056 0.078 0.089 0.095 0.096 0.089

[B] 2SLS, period 1994-2014 (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 3.5591*** 2.4035*** 1.1025* 0.9758*** 0.8003** 1.1534*
(0.848) (0.665) (0.602) (0.352) (0.349) (0.596)

∆ net exports / wagebill in % 0.5644*** 0.7051***
(0.168) (0.169)

∆ ICT equipment in eper worker 0.0279 0.0371
(0.031) (0.029)

age, gender, nationality dummies Yes Yes Yes Yes Yes Yes
education and tenure dummies No Yes Yes Yes Yes Yes
ln base yr earnings No Yes Yes Yes Yes Yes
plant size dummies No No Yes Yes Yes Yes
broad industry dummies No No No Yes Yes Yes
federal state dummies No No No Yes Yes Yes
drop automotive industries No No No No No Yes

Notes: Based on 993,184 (Panels A and B), 1,431,576 (Panel C), 1,246,414 (Panel D), and 2,677,990 workers (Panel E). The outcome variable is the number of days employed,

cumulated over the twenty years following the base year. In panel E, federal state dummies are interacted with a time dummy. Standard errors, clustered by industry x federal

state in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.
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overall cumulative effect. Starting with the industry dimension in panel A, we find that

the positive total effect is solely driven by a substantially higher probability for worker i

to remain employed in his or her original establishment (see column 2), while it becomes

less likely that workers switch to other firms in the same industry (column 3), in different

manufacturing industries (column 4) or outside of manufacturing (column 5). In other

words, robot exposure increases the stability of existing jobs from the point of view of

individual manufacturing workers in Germany.

Table 4: Individual adjustment to robot exposure (employment)

[A] Industry mobility (1) (2) (3) (4) (5)
all other

employers same sector sector
Same industry yes yes no no
Same employer yes no no no

∆ robots per 1000 workers 0.8003** 11.4410*** -4.6514*** -2.0260 -3.9632***
(0.349) (2.124) (1.475) (1.669) (1.029)

∆ net exports / wagebill in % 0.5644*** 1.7617*** -0.3971 0.6215 -1.4217***
(0.168) (0.635) (0.432) (0.453) (0.363)

∆ ICT equipment in eper worker 0.0279 0.0556 -0.0963 0.1202 -0.0515
(0.031) (0.086) (0.126) (0.106) (0.047)

[B] Occupational mobility (1) (2) (3) (4) (5)
all jobs same employer other employer

Same occupational field yes no yes no

∆ robots per 1000 workers 0.8003** 6.3888*** 5.0522*** -7.5556*** -3.0850***
(0.349) (1.584) (0.744) (1.692) (0.559)

∆ net exports / wagebill in % 0.5644*** 1.4603*** 0.3014** -0.2700 -0.9272***
(0.168) (0.513) (0.147) (0.381) (0.204)

∆ ICT equipment in eper worker 0.0279 0.0048 0.0508* -0.0574 0.0298
(0.031) (0.069) (0.027) (0.075) (0.029)

Notes: Based on 1,017,988 workers. 2SLS results for period 1994-2014. The outcome variables are cumulated days of employment. For column (1), employment days are

cumulated over all employment spells in the twenty years following the base year. Panel A: For column (2) employment days are cumulated only when they occurred at the

original workplace. For the other columns, employment days are cumulated only when they occurred at a different plant in the same industry (3), at a plant in a different

manufacturing industry (4), and outside the manufacturing sector (5), respectively. Panel B: Employment days are cumulated only when they occurred in the original

occupation and workplace column (2), in a different occupation but at the original workplace column (3), in the original occupation but at a different workplace column (4), and

in a different occupation and workplace, respectively. All regressions include the same control variables as in column (5) of table 3. Standard errors, clustered by industry x

federal state in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.

Panel B gives a more nuanced result. We find that robot exposure raises the probability

to remain in the same occupation (column 2), and also to switch to a different occupation

at the same workplace (column 3). Actual employer switches become consistently less

likely for more robot exposed workers, however, which is in line with the results in panel

A. Put differently, robots seem to stabilize existing manufacturing jobs. But some workers

end up conducting different tasks than before, yet still in the same establishment.
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Interestingly, Tables 3 and 4 show that ICT exposure seems to have no effect on indi-

vidual employment, while net export exposure also has a stabilizing effect on jobs both at

the industry and the occupational dimension. This result is noteworthy, because export

opportunities may be thought of as a positive shock on industry-level labor demand,

while robots supposedly represent a shock in the opposite direction. Moreover, the pre-

vious section has shown that net exports have positive equilibrium employment effects,

while robots have led to fewer manufacturing jobs across local labor markets. The next

subsection offers a possible reconciliation of those results.

5.2 Entry and re-entry into manufacturing

How can robots lead to fewer manufacturing jobs in equilibrium but stabilize existing

employment relationship in manufacturing firms? One explanation is that robots mainly

induce firms to create fewer new jobs, but not to directly displace incumbent workers.

In Table 5 we investigate this hypothesis. Here we step back to our local labor mar-

ket approach, and now consider patterns of (re-)entry of young workers and returnees

from unemployment as the outcome variable.29 More specifically, we compute the entry

share into manufacturing in region r in 1994, i.e., the average probability that a young

worker who takes up his or her first job ever does so in manufacturing in region r. For

returnees who have been unemployed for at least one year prior to the base period we

proceed analogously. Next, we compute the same variables for the year 2014, and then

the change in those regional (re-)entry probabilities into manufacturing over time. Fi-

nally, we regress those changes on the local technology and trade exposures, following

the same baseline specification as in column 7 of Table 1 above (using the IV model).

The results show that the probability that young workers enter into manufacturing

has indeed become significantly smaller in more robot exposed regions. The negative

impact of robots on equilibrium employment growth in manufacturing, which we have

found in Section 4, may therefore result from lower rates of new entry (for returnees we

find no such effect) but not from a direct destruction of existing jobs. Stated differently,

if robots are a negative shock to industry-level labor demand, it materializes mainly by

fewer new vacancies that are created, or by omitted replacements when a vacancy arises

from natural turnover. Robots "foreclose" entry into manufacturing for young people.
29This setup follows Dauth et al. (2017) who show that changing industry compositions of employment

in Germany are driven only to a lesser extent by workers who smoothly change jobs across industries. Most
of the observed changes are driven by young workers who enter the labor market for the first time, and by
formerly unemployed workers who return into a job. In particular, they have a much lower probability of
(re-)entry into manufacturing than previous generations, thus fueling the aggregate decline of that sector.
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Table 5: Robot exposure and entry into manufacturing employment.

Dependent variable: 4manuf. entrants (returnees)
in all entries between 1994 and 2014 (in %-pts)

(1) (2)
Entry Re-entry

4 robots per 1000 workers -0.1335** 0.0297
(0.068) (0.079)

4 net exports in 1000 eper worker 0.0797 0.3840***
(0.106) (0.100)

4 ICT equipment in eper worker -0.0185*** -0.0143*
(0.007) (0.009)

R2 0.480 0.417

Notes: N = 402. The dependent variables measure the change in the share of manufacturing entrants (column 1) respectively returnees (column 2) in all entries (in %) between

1994 and 2014. The regressions include the full set of control variables as in column (7) of Table 1, Panel B (2SLS). Standard errors clustered at the level of 50 aggregate labour

market regions in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.

Notice that local net export exposure has positive effects on (re-)entry probabilities

into manufacturing, here mainly driven by the returnees. The positive overall effect on

equilibrium employment growth, therefore, seems to come from a combination of more

new jobs and more stable existing jobs in more export-oriented regions. Finally, recall

that ICT exposure neither has an impact on individual job stability (see Tables 3 and 4),

nor on equilibrium growth of (manufacturing) jobs. Still, we find some slightly negative

effects on (re-)entry probabilities, i.e., ICT technology also seems to substitute new jobs.

5.3 Individual earnings and wages

The question remains why robots stabilize existing manufacturing jobs. If robots can

replace human tasks in manufacturing, which apparently happens since robots lead to

fewer new jobs and thereby to lower employment growth there, why do incumbent man-

ufacturing workers not also face an increased risk of job displacement?

Table 6 gives a possible explanation. We move back to the worker-level analysis of

equation (2) and now explore individual earnings profiles. More specifically, in panel

A we use the cumulated individual earnings (normalized by base year earnings) over

twenty years as the outcome variable Yij . In panel B we use (non-normalized) cumu-

lated earnings over days employed to construct a measure of the average daily wage

that worker i has earned during the subsequent two decades. The single columns follow

the same structure as in Table 3 and successively add further controls.
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Table 6: Individual earnings and average wages

[A] Earnings (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 1.3583* 1.7025** -0.2585 -0.6550** -0.7989*** -1.0822***
(0.761) (0.736) (0.523) (0.292) (0.286) (0.388)

∆ net exports / wagebill in % 0.4025*** 0.3828***
(0.106) (0.103)

∆ ICT equipment in eper worker 0.0159 0.0162
(0.020) (0.019)

R2 0.056 0.093 0.126 0.140 0.141 0.134

[B] Average Wages (1) (2) (3) (4) (5)

∆ robots per 1000 workers 0.1361** 0.0523* -0.0222 -0.0374*** -0.0417*** -0.0649***
(0.062) (0.027) (0.018) (0.012) (0.011) (0.015)

∆ net exports / wagebill in % 0.0117*** 0.0095**
(0.004) (0.004)

∆ ICT equipment in eper worker 0.0007 0.0006
(0.001) (0.001)

R2 0.176 0.677 0.690 0.696 0.696 0.691

age, gender, nationality dummies Yes Yes Yes Yes Yes Yes
education and tenure dummies No Yes Yes Yes Yes Yes
ln base yr earnings No Yes Yes Yes Yes Yes
plant size dummies No No Yes Yes Yes Yes
broad industry dummies No No No Yes Yes Yes
federal state dummies No No No Yes Yes Yes
drop automotive industries No No No No No Yes

Notes: Based on 993,184 workers (Panel A) and 986,353 workers (Panel B). 2SLS results for period 1994-2014. The outcome variables are 100 x earnings normalized by earnings

in the base year and cumulated over the twenty years following the base year (Panel A) and 100 x log average wages over the twenty years following the base year (Panel B).

Standard errors, clustered by industry x federal state in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.

At first there are positive coefficients, but once we control for broad industry and re-

gional trends by adding the dummies φJ(j) and φREG(i) in column 4, we find significantly

negative effects of robot exposure on individual earnings and wages. This result remains

robust when adding net export and ICT exposure in column 5, which have positive and

no effects respectively, and when dropping automobile workers in column 6.

In Appendix Table A.12 we report the results for the shorter time intervals, both

stacked and separately. They confirm the negative wage and earnings effects caused

by robots, and furthermore show that the adverse effects have become more severe over

time. This can be seen by comparing the coefficient in column 5 of Panels B and C, which

has more than doubled from the first to the second decade.

To benchmark the wage effects quantitatively, we can compare a worker at the 75th

and the 25th percentile of individual robot exposure facing ∆robotsj equal to 9.60 and

3.37, respectively. If both earn the average daily wage of 120.70e , then column 5 of Ta-
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ble 6B implies that the more robot exposed worker receives a loss of 0.31 eper day.30

Since the average worker is employed on 5,959 days over twenty years, the total loss

is thus 1,867 e relative to the equivalent worker with low exposure. Yet, there is also a

positive causal effect of robots on individual employment. From column 5 of Table 3B

we calculate that this is equivalent to 0.8003 × (9.6− 3.7) = 5 additional days in em-

ployment for the more strongly robot exposed worker. He or she, thus, makes up for

5 × (120.70 − 0.31) = 600.91 e . Hence, in the overall comparison, we conclude that

the worker at the 75th percentile experiences a cumulative earnings loss of 1,266 e over

twenty years, slightly more than 63 eper year, compared to the less robot exposed col-

league. This is still a moderate number. However, bear in mind how skewed robot

installations are at the industry-level (see Figure 2). Therefore we obtain much larger

quantitative magnitudes in more extreme comparisons. For example, an analogous com-

putation for average workers at the 90th and the 10th percentile of exposure yields an

overall earnings loss caused by robots of 23,303 - 7,373 = 15,930 e over twenty years, or

almost 800 eper year, which is no longer a negligible number.

Summing up, robots have stabilized the careers of manufacturing workers in Germany

in the sense that they increased the probability of keeping a job at the original establish-

ment (though not necessarily performing the same tasks). But this stability apparently

came at a cost, namely significantly lower wages and earnings for the same job.

5.4 Heterogeneous effects for different workers

There is wide heterogeneity across different types of individuals both with respect to the

qualification level, and to the tasks (the occupation) that the workers perform. Robots

may directly substitute some of those, and thereby replace certain professions, while they

are more complementary to other skills and tasks. The new technology is thus likely to

affect single workers very differently. We investigate this effect heterogeneity by inter-

acting robot exposure with the various dummies for skill and occupational categories.31

The results are illustrated in Figure 6.

Here, panels (a) and (b) refer to the long-run model over twenty years, while panels

(c) and (d) refer to the stacked short-run model. For every labor market group we re-

port the point estimate for the impact of robot exposure on cumulated earnings, and the

respective confidence interval. The left two panels (a) and (c) distinguish three skill cat-

30The calculation is [exp (−0.0417/100 ∗ (9.60− 1))− exp (−0.0417/100 ∗ (3.37− 1))]× 120.70 = -0.31.
31We have also experimented with sample splits and obtained very similar results.
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(a) by education, long period (b) by occupation, long period

(c) by education, stacked short periods (d) by occupation, stacked short periods

Notes: The figures report the coefficients of interaction terms of ∆ robots per 1000 workers and dummies indicating the respective worker group. The outcome variables are 100

x earnings (normalized by earnings in the base year) cumulated over the twenty years following the base year. All regressions include the same control variables as in column

(5) of table 3. The confidence intervals are constructed from standard errors clustered by industry x federal state.

Figure 6: Heterogeneous earnings effects
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egories, while panels (b) and (d) differentiate seven broad occupational categories that

can be found among the individual manufacturing workers in our sample.

The picture that emerges is clear-cut. Robot exposure decreases earnings especially for

medium-skilled workers with completed apprenticeship. For this group we find strongly

negative and significant effects both in the long- and in the short-run model, and those

losses drive the average effects in Table 6 because completed apprenticeship is the typical

profile for manufacturing workers in Germany and this group accounts for almost 75%

of all individuals in our sample. Robots also tend to reduce the earnings of low-skilled

workers without formal education, but the effects are less precisely estimated.

By contrast, we find significant earnings gains for the roughly 9% of high-skilled work-

ers with completed university education, especially in in panel (c). Those workers may

gain from robots, because they possess human capital that is complementary to this tech-

nology, and they perform tasks that are not as easily replaceable by robots. This hypoth-

esis is supported by the analysis at the occupational dimension in panels (b) and (d).

We find significant earnings losses mainly for machine operators, who mostly tend to be

medium-skilled workers. Their previous tasks may become somewhat obsolete, because

robots – by definition – do not require a human operator anymore but have the poten-

tial of conducting many production steps autonomously. Earnings gains, however, are

realized in occupations such as management and law, as well as technical and natural

sciences, where university-trained workers are strongly over-represented.

Recall that robots cause, on average, more stable jobs but lower wages for individ-

ual manufacturing workers in Germany (see Tables 3 and 6 for the average impact of

robots on worker-level employment, wages and earnings). The positive effect on cumu-

lated days in employment do not differ strongly across different groups, but the wage

and earnings effects do. High-skilled workers in non-routine occupations tend to benefit

both in terms of job stability and wages. Medium-skilled workers who mainly perform

routine and manual tasks, however, face significant earnings losses from increasing robot

exposure. Those losses do not come from displacements or interruptions in work biogra-

phies, but they mainly arise on existing jobs through lower wages.

6 The aggregate impact of robots

The analysis in Section 5 suggests that robots have notable distributional effects at the

individual level, as they benefit some workers considerably more than others. In this
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final section of the paper we study the effects of robots on productivity and distribution

from a more aggregate perspective, by moving back to the local labor market approach

and exploiting additional data from the German Federal Statistical Office which breaks

down national accounts at the regional level.

We focus on the second decade (2004-2014) in this analysis, because most data from

this source are not available for earlier years. We follow the previous local labor market

approach (2) and use the IV specification from column 7 of Table 1, panel B. The main

results for various outcome variables ∆Yr are summarized in Table 7.

As can be seen in column 1, we find notable and significant effects of robots on average

labor productivity. More specifically, every additional robot per thousand workers in the

local labor market raises the growth rate of GDP per person employed by 0.5365 per cent.

Columns 2 and 3 consider wage data from two different sources, namely the IAB and

the Federal Statistical Office, respectively, where the latter reports average gross pay per

employee at the local level.32 In both cases we find no effect of robots on average wage

growth; if anything, the impact even tends to be negative (but is imprecisely estimated),

which is broadly in line with or results for individual-level wages in Section 5.

Table 7: Robots and other regional outcomes.

Dependent variable: Change between 2004 and 2014

(1) (2) (3) (4) (5) (6) (7)
Labor Average Gross pay Labor prod. - Total emp./ Pop. Unempl.
prod. wage per empl. Gross pay per empl. pop. rate

4 robots per 1000 workers 0.5365** -0.0766 -0.3109 2.0757** -0.1026 0.0173 -0.0693*
(0.268) (0.129) (0.249) (0.945) (0.158) (0.190) (0.038)

N 402 402 372 372 395 395 402

Notes: The dependent variable in column (1) is the log change in GDP per person employed x 100, in column (2) the log change in average imputed wages x 100, in column (3)

the log change in gross pay per employee x 100, in column (4) the log change of the difference between GDP per person employed and gross pay per employee x 100, and in

column (6) the log change in population x 100. The dependent variables in columns (5) and (7) are, respectively, the percentage point change in the number of all

workers/unemployed persons in the local population x 100. The regressions include the full set of control variables as in column (7) of Table 1, Panel B (2SLS). Standard errors

clustered at the level of 50 aggregate labour market regions in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.

In other words, we find that the increase in labor productivity caused by robots is not

reflected in higher average wages. This suggests that the rents created by this technology

are not captured by labor at large, but mostly by the owners of other factors, such as

capital, or by residual profit claimants. This hypothesis is supported by column 4 in

Table 7. Here we compute the change in GDP per person employed and the wage bill

per employee in region r between 2004 and 2014, and use the difference as a proxy for

growth in aggregate non-labor income. We find strongly positive effects of robots, i.e.,

32Notice that, unfortunately, data is missing for 30 regions in column 3. The average wage data in
column 2 is from the IAB data source described above in Section 2.
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they drive output and income growth that is not accruing to labor.

The data do not allow us to distinguish this non-labor income further into factor re-

munerations and profit components, but Table 7 suggests that robots have contributed

to the fall of the aggregate labor income share. This decline has been noted in various

high-income countries over the last decades (Autor et al. 2017; Kehrig and Vincent 2017),

including in Germany. Notice that this aggregate distributive impact, i.e., the reallocation

of income shares away from labor and towards other factors, is still compatible with the

pattern shown above in Figure 6, which suggests that some workers with high individual

human capital still benefited from robots, despite the falling aggregate labor share.

In columns 5-6 in Table 7 we exploit employment and population data from the Fed-

eral Statistical Office to check the consistency of some of our previous results. In par-

ticular, in column 5 we re-compute the change in the employment-to-population ratio

from this data set and, as in panel F of Table 2, find no effect of robots. Similarly, col-

umn 6 shows that robots also have no effects on population growth alone. Hence, they

do not seem to induce notable migration responses, such as moves away from more robot

exposed regions. This is reassuring, because it suggests that our local labor market ap-

proach seems to be adequate to study the labor market effects of robots. The single 402

regions may be considered as small sub-economies of Germany across which migratory

responses to aggregate shocks appear to be weak. Finally, in column 7 we consider the

change in local unemployment rates and find that robots even tend to reduce unem-

ployment slightly, although the effect is barely significant.33 This is consistent with our

previous result that robots have not led to fewer jobs in total.

7 Conclusion

In this paper we have studied the impact of rising robot exposure on the careers of in-

dividual manufacturing workers, and the equilibrium impact across industries and local

labor markets in Germany. Unlike in the United States, we find no evidence that robots

have been major job killers so far. They do no not cause overall job losses, but they do

affect the composition of aggregate employment in Germany. We estimate that every

robot destroys roughly two manufacturing jobs. This implies a total loss of 275,000 man-

ufacturing jobs in the period 1994-2014, which accounts for roughly 23% of the overall

33Here we again make use of the IAB data because of missing values in the unemployment data from
the Federal Statistical Office. The change in the local unemployment rate is calculated based on average
monthly values on unemployed persons in 2004 and 2014, respectively.

38



decline during those two decades. But this loss was fully offset (or even slightly over-

compensated) by additional jobs in the service sector.

We then investigate the detailed channels behind those aggregate effects in a worker-

level analysis. Most importantly, we find that robots have not raised the displacement

risk for incumbent manufacturing workers. Quite in contrast, more robot exposed work-

ers are even more likely to remain employed in their original workplace, though not nec-

essarily performing the same tasks as before the robot ascension. The aggregate decline

in manufacturing employment is therefore not caused by destruction of existing jobs, but

it is solely driven by fewer new manufacturing jobs for young labor market entrants.

The enhanced job stability for insiders comes at a cost for individual workers, namely

lower wages due to rising robot exposure. Those impacts differ strongly across individ-

uals. High-skilled workers in managerial and science occupations tend to benefit both in

terms of job stability and wages. Medium-skilled workers who mainly conduct routine

and manual tasks, however, face significant earnings losses from increasing robot expo-

sure. Those loses do not come from displacements or interruptions in work biographies,

but mainly arise on existing jobs through lower wages.

We believe that this finding reflects a key feature of industrial relations in the Ger-

man labor market: the manufacturing sector is still highly unionized, and especially

blue-collar wages are typically determined collectively with strong involvement of work

councils. It has been frequently argued that German unions have a strong preference for

maintaining high employment levels, and are willing to accept flexible wage setting ar-

rangements, such as opening clauses, in the presence of negative shocks in order to keep

jobs.34 This flexibility of unions, and the resulting wage restraints, are actually one of the

leading hypotheses for the strong overall performance of the German labor market (the

"employment miracle") since the mid-2000s (see, e.g., Dustmann et al. 2014).

Our analysis suggests that the rise of the robots may have triggered a similar response,

namely wage cuts to stabilize jobs for incumbent insiders. This channel is most relevant

for medium-skilled workers, and in turn led to reduced entry of new workers into the

robot exposed manufacturing industries.

In the aggregate we find that robots raise labor productivity, but not wages. Most rents

of this new technology, therefore, seem to be captured by profit claimants and factors

other than labor. We thus conclude that robots seem to have contributed to the declin-
34This point has been made, for example, in the context of offshoring after the fall of the iron curtain,

where many firms threatened to move production to Eastern Europe.
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ing labor income share, which has been noted in many countries and which is perhaps

among the most important economic challenges for the future.
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Appendix
A ISIC-NACE cross-walk

A technical challenge prior to our empirical analysis is to link the data on robots from the
IFR with German labor market data. This requires to harmonize two different but related
industrial classifications. The IFR uses an industry classification that is based on the
International Standard Industrial Classification of All Economic Activities (ISIC) Rev. 4.
In essence, the IFR classification coincides with the 2-digit aggregation of ISIC with some
industries being further aggregated (e.g. 13-15: textiles, leather, wearing apparel) and
some available at the 3-digit level (the 3-digit branches within 26-27: electrical, electronics
and the 3-digit branches within 29: automotive). Industries outside of manufacturing
are aggregate to very broad groups. In total, this classification distinguishes between 25
industries.

Our labor market data are classified by various revisions of the German equivalent to
the statistical classification of economic activities in the European Community (NACE).
In an attempt to provide a consistent long time series, IAB data contain NACE Rev. 1
codes that have been extrapolated before/after the period of 1999-2003 when this revi-
sion was originally used (Eberle et al., 2011).

To harmonize the two classifications, we start with raw correspondence tables (both 2-
digit and 3-digit level) between ISIC Rev. 3 and NACE Rev. 1 (cross-walk A), ISIC Rev. 3.1
and ISIC Rev. 3 (cross-walk B), and ISIC Rev. 4 and ISIC Rev. 3.1 (cross-walk C), all pro-
vided by EUROSTAT. 35 In a first step, cross-walk C is merged to cross-walk B, and the
result is in turn merged to cross-walk A. We then keep all ISIC Rev. 4 industries with
available IFR data and aggregate the codes according to the IFR classification. This pro-
duces ambiguous cases: the 25 IFR industries codes now relate to 73 NACE Rev. 1 codes.
In total, there are 128 relations (cross-walk D). We use employment data from Germany in
1978 to gauge the size of each NACE industry and produce weights for those ambiguous
cases.

Cross-walk D now contains relations between 3-digit industries and relations between
2-digit industries. In some cases, these overlap. For example, ISIC code 10 relates to
NACE codes 1, 2, 15, 16, and 24. At the same time, ISIC code 261 relates to NACE codes
242, 243, 244, 245, 246, 252, 300, 311, 312, 313, 321, 323. This means that cross-walk D
contains NACE code 24 both at the 2 and 3-digit levels. We hence expand this cross-walk
so that ISIC code 10 relates to NACE codes 1, 2, 15, 16, and all 3-digit industries within
24 and proceed analogously with all similar cases. This does not increase the number of
industries but increases the number of relations from 128 to 243 (Cross-walk E).

Finally, we aggregate the full sample of all employment notifications on June 30 1978
to 2/3-digit NACE codes and merge this to cross-walk E (at this point, we lose the NACE
industry 12 "Mining of uranium and thorium ores" as there were no employees in 1978).
Our final cross-walk now entails 241 relations of 25 ISIC to 72 NACE codes. For the
ambiguous cases, where one ISIC relates to several NACE codes, we construct the em-
ployment share of each NACE code in all assigned codes as weights. For example, ISIC
code 24 relates to NACE codes 23 (41,499 employees in 1978) and 27 (509,031 employees).
23 thus gets a weight of 0.075 and 27 a weight of 0.925.

35http://ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST_REL&
StrLanguageCode=EN&IntCurrentPage=8
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In section 4.4, we check whether the increase in the number of industries drives our
results. We do this by constructing a reverse cross-walk assigning one of the 25 ISIC codes
to each of the 73 NACE codes. Departing from cross-walk E, we now need a measure for
the relative size of each ISIC code. Unfortunately, German employment data classified
by ISIC codes is not available, so we need to content ourselves with robot data from
2004 (the very first year when all industry codes are filled) to construct weights for all
ambiguous cases. This reverse cross-walk then allows us to aggregate our local industry
level employment data to the level of ISIC x county cells.

B Appendix Tables
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Table A.2: Summary statistics, worker level.

1994-2014 1994-2004 2004-2014
observations 993,184 1,431,576 1,246,414

mean ( sd ) mean ( sd ) mean ( sd )

[A] Outcomes, cumulated over years following base year
100 x earnings / base year earnings 1925 ( 1001 ) 940 ( 449 ) 950 ( 353 )
days employed 5959 ( 2014 ) 3015 ( 1001 ) 3261 ( 802 )
average daily wage 120.7 ( 71.6 ) 121.7 ( 74.4 ) 126.8 ( 73.9 )

[B] control variables, measured in base year
base year earnings 38880 ( 20775 ) 40273 ( 22441 ) 44862 ( 28322 )
dummy, 1=female 0.239 ( 0.426 ) 0.237 ( 0.425 ) 0.215 ( 0.411 )
dummy, 1=foreign 0.100 ( 0.301 ) 0.110 ( 0.312 ) 0.086 ( 0.280 )
dummy, 1=age ≤34 yrs 0.554 ( 0.497 ) 0.388 ( 0.487 ) 0.251 ( 0.434 )
dummy, 1=age 35-44 yrs 0.446 ( 0.497 ) 0.316 ( 0.465 ) 0.411 ( 0.492 )
dummy, 1=age ≥45 yrs - ( - ) 0.281 ( 0.449 ) 0.319 ( 0.466 )
dummy, 1=low skilled 0.153 ( 0.360 ) 0.170 ( 0.375 ) 0.118 ( 0.323 )
dummy, 1=medium skilled 0.756 ( 0.430 ) 0.740 ( 0.438 ) 0.757 ( 0.429 )
dummy, 1=high skilled 0.091 ( 0.288 ) 0.090 ( 0.286 ) 0.125 ( 0.331 )
dummy, 1=tenure 2-4 yrs 0.405 ( 0.491 ) 0.357 ( 0.479 ) 0.285 ( 0.451 )
dummy, 1=tenure 5-9 yrs 0.315 ( 0.464 ) 0.270 ( 0.444 ) 0.287 ( 0.452 )
dummy, 1=tenure ≥10 yrs 0.243 ( 0.429 ) 0.338 ( 0.473 ) 0.387 ( 0.487 )
dummy, 1=plant size ≤9 0.059 ( 0.236 ) 0.056 ( 0.230 ) 0.045 ( 0.207 )
dummy, 1=plant size 10-99 0.232 ( 0.422 ) 0.230 ( 0.421 ) 0.251 ( 0.434 )
dummy, 1=plant size 100-499 0.287 ( 0.453 ) 0.288 ( 0.453 ) 0.320 ( 0.466 )
dummy, 1=plant size 500-999 0.121 ( 0.326 ) 0.122 ( 0.328 ) 0.118 ( 0.322 )
dummy, 1=plant size 1000-9999 0.219 ( 0.414 ) 0.222 ( 0.415 ) 0.189 ( 0.392 )
dummy, 1=plant size ≥10000 0.079 ( 0.269 ) 0.080 ( 0.271 ) 0.075 ( 0.263 )
dummy, 1=food products 0.084 ( 0.277 ) 0.083 ( 0.276 ) 0.085 ( 0.279 )
dummy, 1=consumer goods 0.123 ( 0.328 ) 0.124 ( 0.330 ) 0.099 ( 0.299 )
dummy, 1=industrial goods 0.362 ( 0.480 ) 0.362 ( 0.481 ) 0.363 ( 0.481 )
dummy, 1=capital goods 0.432 ( 0.495 ) 0.430 ( 0.495 ) 0.453 ( 0.498 )

[C] Exposure to robots
∆ robots per 1000 workers 16.976 ( 30.942 ) 10.620 ( 20.373 ) 6.915 ( 12.158 )
p10-p90 interval [ -1.748 ; 77.141 ] [ 0.020 ; 56.468 ] [ -1.886 ; 23.650 ]
p25-p75 interval [ 3.369 ; 9.606 ] [ 1.079 ; 4.337 ] [ 1.502 ; 7.829 ]

[D] Exposure to trade and ICT
∆ net exports / wagebill in % 7.803 ( 65.234 ) 2.537 ( 32.433 ) 4.542 ( 45.275 )
∆ ICT equipment in eper worker 391.5 ( 354.1 ) 150.5 ( 143.0 ) 288.7 ( 307.9 )
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Table A.3: Summary statistics, region level.

1994-2014 1994-2004 2004-2014
observations 402 402 402

mean ( sd ) mean ( sd ) mean ( sd )

[A] Outcomes (4 in logs)
employment -0.020 ( 0.187 ) -0.099 ( 0.131 ) 0.078 ( 0.076 )
manufacturing employment -0.161 ( 0.280 ) -0.158 ( 0.189 ) -0.003 ( 0.142 )
manufacturing employment in automotive 0.238 ( 1.312 ) 0.109 ( 0.831 ) 0.127 ( 1.077 )
manufacturing employment in other sectors -0.180 ( 0.279 ) -0.172 ( 0.189 ) -0.008 ( 0.143 )
non-manufacturing employment 0.043 ( 0.229 ) -0.069 ( 0.158 ) 0.112 ( 0.092 )

[B] Control variables, shares in base year (in %)
female 34.716 ( 4.674 ) 34.716 ( 4.674 ) 34.454 ( 5.071 )
foreign 6.981 ( 4.781 ) 6.981 ( 4.781 ) 5.565 ( 3.842 )
age ≥ 50 yrs 20.101 ( 2.366 ) 20.101 ( 2.366 ) 20.903 ( 2.347 )
low skilled 11.063 ( 4.435 ) 11.063 ( 4.435 ) 8.020 ( 3.342 )
medium skilled 80.296 ( 4.117 ) 80.296 ( 4.117 ) 80.308 ( 5.205 )
high skilled 7.956 ( 3.965 ) 7.956 ( 3.965 ) 11.009 ( 4.899 )
manufacturing 31.830 ( 12.496 ) 31.830 ( 12.496 ) 29.969 ( 11.768 )
food products 3.490 ( 2.078 ) 3.490 ( 2.078 ) 3.279 ( 2.158 )
consumer goods 4.513 ( 3.866 ) 4.513 ( 3.866 ) 3.151 ( 2.670 )
industrial goods 12.176 ( 7.710 ) 12.176 ( 7.710 ) 11.651 ( 6.933 )
capital goods 11.651 ( 9.005 ) 11.651 ( 9.005 ) 11.888 ( 8.969 )
construction 11.607 ( 4.527 ) 11.607 ( 4.527 ) 7.843 ( 3.072 )
maintenance; hotels and restaurants 18.642 ( 4.303 ) 18.642 ( 4.303 ) 19.369 ( 4.157 )
services 13.452 ( 5.159 ) 13.452 ( 5.159 ) 17.572 ( 6.485 )
education; social work; other organizations 19.934 ( 6.391 ) 19.934 ( 6.391 ) 21.273 ( 6.041 )

dummy, 1=north 0.159 ( 0.366 ) 0.159 ( 0.366 ) 0.159 ( 0.366 )
dummy, 1=south 0.348 ( 0.477 ) 0.348 ( 0.477 ) 0.348 ( 0.477 )
dummy, 1=east 0.192 ( 0.394 ) 0.192 ( 0.394 ) 0.192 ( 0.394 )

[C] Exposure to robots
∆ robots per 1000 workers 4.644 ( 6.921 ) 3.044 ( 4.297 ) 1.723 ( 2.585 )
p10-p90 interval [ 1.249 ; 7.659 ] [ 0.796 ; 5.543 ] [ 0.440 ; 2.602 ]
p25-p75 interval [ 1.871 ; 4.898 ] [ 1.187 ; 3.374 ] [ 0.741 ; 1.832 ]
∆ robots per 1000 workers in automotive 2.026 ( 6.851 ) 1.322 ( 4.165 ) 0.710 ( 2.595 )
∆ robots per 1000 workers in other sectors 2.618 ( 1.970 ) 1.722 ( 1.471 ) 1.013 ( 0.690 )

[D] Robot production
dummy, 1=robot producer 0.022 ( 0.148 ) 0.022 ( 0.148 ) 0.022 ( 0.148 )

[E] Exposure to trade and ICT
∆ net exports in 1000 eper worker 0.956 ( 3.146 ) 0.373 ( 1.663 ) 0.609 ( 2.259 )
∆ ICT equipment in eper worker 728.371 ( 82.917 ) 267.754 ( 36.184 ) 523.693 ( 57.602 )
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Table A.4: Robot exposure and employment, detailed version (OLS).

Dependent variable:
Log-4 in total employment between 1994 and 2014

(1) (2) (3) (4) (5) (6) (7) (8)

4 robots per 1000 workers 0.2324** 0.3637*** 0.0416 0.0332 0.0091 0.0065 -0.0005 -0.1025
(0.095) (0.106) (0.126) (0.125) (0.117) (0.116) (0.132) (0.172)

dummy, 1=north 2.8598 1.6878 8.8323*** 8.7607*** 8.6703*** 8.4877*** 3.0493 2.9438
(2.986) (3.047) (3.040) (3.089) (3.069) (3.123) (2.597) (2.614)

dummy, 1=south 9.4435** 10.1838*** 9.2276*** 9.3125*** 9.5010*** 9.2831*** 7.3637** 7.5935**
(3.588) (3.414) (3.443) (3.425) (3.445) (3.463) (2.923) (2.950)

dummy, 1=east -23.9257*** -26.8097*** -19.9017*** -19.7888*** -20.0067*** -21.1800*** -14.2909*** -13.0432**
(3.287) (3.472) (5.501) (5.564) (5.584) (5.391) (5.124) (5.000)

% manufacturing -0.1875** -0.0979 -0.0922 -0.0990 -0.1370
(0.088) (0.189) (0.189) (0.191) (0.213)

% female -0.6439 -0.6607 -0.5853 -0.5130 -1.1367*** -1.2205***
(0.451) (0.461) (0.467) (0.452) (0.356) (0.352)

% foreign 1.0258*** 1.0261*** 0.9936*** 0.9654*** 0.5996* 0.6149*
(0.262) (0.261) (0.254) (0.260) (0.323) (0.314)

% age ≥50 yrs -2.9117*** -2.8899*** -2.9123*** -2.8297*** -2.1610*** -2.1998***
(0.495) (0.501) (0.514) (0.501) (0.489) (0.493)

% medium skilled 0.6455 0.6443 0.6117 0.6423 -0.1045 -0.1514
(0.535) (0.534) (0.534) (0.536) (0.475) (0.479)

% high skilled 1.3220** 1.3331** 1.2776** 1.2665** 1.1835*** 1.1082***
(0.526) (0.521) (0.529) (0.541) (0.416) (0.412)

dummy, 1=robot producer -4.8877 -4.7980 -4.5733 -3.9931 -4.1504
(4.350) (4.369) (4.418) (4.652) (4.626)

4 net exports in 1000 eper
worker

0.3374 0.3479 0.2375 0.2161

(0.220) (0.220) (0.242) (0.249)
4 ICT equip. in eper worker -0.0110 -0.0163 -0.0166

(0.016) (0.017) (0.017)
% food products 2.4246*** 2.4400***

(0.402) (0.403)
% consumer goods 0.5921** 0.6396**

(0.293) (0.307)
% industrial goods 0.6622*** 0.6846***

(0.244) (0.252)
% capital goods 1.0118*** 1.0371***

(0.260) (0.271)
% construction 1.5571*** 1.5597***

(0.338) (0.342)
% maintenance 1.7592*** 1.7993***

(0.369) (0.370)
% services 0.6603*** 0.7095***

(0.241) (0.247)
% education 1.1429*** 1.1966***

R2 0.432 0.439 0.541 0.543 0.545 0.546 0.625 0.623

Exclude top auto regions No No No No No No No Yes

Notes: N = 402. Detailed version of Table 1, Panel A. Column (8) drops the german regions with the highest automobile shares
(Wolfsburg and Dingolfing-Landau). See Table 1 for a description of control variables. Standard errors clustered at the level of 50
aggregate labour market regions in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.
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Table A.5: Robot exposure and employment, detailed version (2SLS).

Dependent variable:
Log-4 in total employment between 1994 and 2014

(1) (2) (3) (4) (5) (6) (7) (8)

4 robots per 1000 workers 0.2410** 0.3845*** 0.0399 0.0344 -0.0398 -0.0054 -0.0058 -0.0848
(0.095) (0.105) (0.124) (0.124) (0.109) (0.112) (0.120) (0.150)

dummy, 1=north 2.8530 1.6300 8.8386*** 8.7563*** 8.5930*** 8.7560*** 3.1153 2.9901
(2.944) (3.008) (2.972) (3.017) (2.967) (2.947) (2.508) (2.515)

dummy, 1=south 9.4321*** 10.1916*** 9.2274*** 9.3126*** 9.7696*** 10.0112*** 7.6471*** 7.8588***
(3.538) (3.347) (3.367) (3.343) (3.412) (3.387) (2.844) (2.889)

dummy, 1=east -23.9046*** -26.8825*** -19.8971*** -19.7922*** -20.2784*** -18.7843*** -15.1214*** -13.9563***
(3.232) (3.424) (5.386) (5.436) (5.487) (5.305) (4.809) (4.678)

% manufacturing -0.1947** -0.0973 -0.0927 -0.1035 -0.0624
(0.087) (0.184) (0.184) (0.189) (0.205)

% female -0.6444 -0.6603 -0.4818 -0.5845 -1.0664*** -1.1411***
(0.441) (0.449) (0.464) (0.424) (0.353) (0.347)

% foreign 1.0263*** 1.0257*** 0.9514*** 0.9872*** 0.5783* 0.5872**
(0.257) (0.256) (0.242) (0.249) (0.311) (0.299)

% age ≥50 yrs -2.9126*** -2.8892*** -2.9523*** -3.0401*** -2.2967*** -2.3267***
(0.484) (0.489) (0.517) (0.524) (0.495) (0.498)

% medium skilled 0.6465 0.6436 0.5734 0.5264 -0.1646 -0.2088
(0.520) (0.519) (0.519) (0.498) (0.451) (0.456)

% high skilled 1.3234*** 1.3321*** 1.2101** 1.2153** 1.2802*** 1.2008***
(0.511) (0.507) (0.516) (0.513) (0.395) (0.394)

dummy, 1=robot producer -4.8847 -4.7046 -4.9525 -4.2004 -4.2992
(4.250) (4.332) (4.212) (4.467) (4.464)

4 net exports in 1000 eper
worker

0.8197*** 0.7319** 0.6232* 0.5975

(0.293) (0.304) (0.370) (0.376)
4 ICT equipment in eper
worker

0.0142 0.0046 0.0027

(0.014) (0.015) (0.014)
% food products 2.3508*** 2.3708***

(0.394) (0.394)
% consumer goods 0.5882* 0.6329**

(0.305) (0.317)
% industrial goods 0.6149*** 0.6363***

(0.237) (0.246)
% capital goods 0.9643*** 0.9856***

(0.248) (0.260)
% construction 1.5578*** 1.5604***

(0.317) (0.321)
% maintenance 1.6392*** 1.6862***

(0.367) (0.370)
% services 0.5272** 0.5819**

(0.261) (0.267)
% education 0.9518*** 1.0136***

(0.267) (0.266)

R2 0.432 0.439 0.541 0.543 0.540 0.537 0.618 0.617

Exclude top auto regions No No No No No No No Yes

Notes: N = 402. Detailed version of Table 1, Panel B. Column (8) drops the german regions with the highest automobile shares
(Wolfsburg and Dingolfing-Landau). See Table 1 for a description of control variables. Standard errors clustered at the level of 50
aggregate labour market regions in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.
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Table A.6: Robot producers.

Name Headquarter Production facility in Germany

Headquarter in Germany

ABB Mannheim (ABB Germany) Mannheim, Friedberg (Wetteraukreis), Hamburg
Baden (CH, ABB International)

Kuka Augsburg Augsburg, Wolfsburg, Siegen, Braunschweig
Hude-Wuesting (Kreis Oldenburg)

Cloos Haigar (Lahn-Dill Kreis) Haigar (Lahn-Dill Kreis), Berlin
Duerr Bietigheim-Bissingen (Kreis Ludwigsburg) Bietigheim-Bissingen (Kreis Ludwigsburg)
b+m Eiterfeld (Kreis Fulda) Eiterfeld (Kreis Fulda)

Headquarter outside Germany

Wittmann Wien (AT) Nuremberg, Meinerzhagen (Maerkischer Kreis)
Staeubli Pfaeffikon SZ (CH) Bayreuth, Chemnitz
igm Wiener Neudorf (AT) Kornwestheim (Kreis Ludwigsburg)
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Table A.7: Employment effects in different time periods.

(1) (2) (3) (4) (5)
Total Manuf. Manuf. auto Manuf. other Non-manuf.

[A] Stacked periods: 100 x Log-4 in employment (1994-2004 and 2004-2014)

4 robots 0.0324 -0.1028 -2.8671** -0.2607 0.3033
(0.100) (0.155) (1.282) (0.213) (0.199)

Low skilled
4 robots -0.1894 -0.4508 -1.9740** 0.1858 0.0097

(0.196) (0.291) (0.914) (0.272) (0.210)

Medium skilled
4 robots -0.1356 -0.1124 -3.1614*** -0.0263 0.1547

(0.107) (0.163) (1.197) (0.219) (0.142)

High skilled
4 robots 0.5463** 0.3754 -0.6375 0.6251 0.6281**

(0.226) (0.270) (0.976) (0.397) (0.262)

[B] First period: 100 x Log-4 in employment between 1994 and 2004

4 robots 0.1302 -0.0415 -2.5407 -0.2244 0.3121
(0.145) (0.318) (1.656) (0.349) (0.301)

Low skilled
4 robots 0.1680 0.6036 -3.9314** 1.4587*** -0.1465

(0.328) (0.545) (1.592) (0.477) (0.295)

Medium skilled
4 robots -0.0056 -0.0042 -2.1087 0.0797 0.1569

(0.159) (0.299) (1.544) (0.335) (0.203)

High skilled
4 robots 0.7783*** 0.5171 -2.2122 1.0506** 0.8370**

(0.292) (0.360) (1.577) (0.481) (0.410)

[C] Second period: 100 x Log-4 in employment between 2004 and 2014

4 robots -0.8339*** -2.0943*** -2.5792 -2.6022*** 0.1170
(0.230) (0.371) (2.407) (0.272) (0.321)

Low skilled
4 robots -0.8917* -3.0223*** -1.3650 -2.9979*** -0.1475

(0.539) (0.963) (2.328) (0.516) (0.628)

Medium skilled
4 robots -0.6041*** -1.6044*** -2.8900 -1.8487*** 0.0693

(0.176) (0.360) (2.236) (0.295) (0.218)

High skilled
4 robots -0.6320 -2.4863*** -5.0034 -3.0943*** 0.2747

(0.410) (0.741) (3.577) (0.671) (0.436)

[D] Placebo check: 100 x Log-4 in employment between 1984 and 1994

4 robots -0.0366 -0.0346 0.4649 0.0703 0.0669
(0.095) (0.130) (0.987) (0.165) (0.123)

Notes: The outcome variables are log-differences in employment: Total employment (1), employment in manufacturing (2), employment in manufacturing of motor vehicles (3),

employment in manufacturing except motor vehicles (4), and employment in non-manufacturing (5). Panels B and C: 10-year changes in employment for 1994-2004 (first

period) and 2004-2014 (second period), respectively. Panel A: Stacked differences (first and second period). Panel D: Log-differences in employment between 1984 and 1994 are

regressed on the change in robot exposure between 1994 and 2014. All regressions include the full set of control variables as in column (7) of Table 1, Panel B (2SLS). The

regressions in Panel A additionally include region x time interaction terms. Standard errors clustered at the level of 50 aggregate labour market regions in parentheses. Levels of

significance: *** 1 %, ** 5 %, * 10 %.
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Table A.8: Robustness checks. Region-level.

Dependent variable:
100 x Log-4 in employment between 1994 and 2014

(1) (2) (3) (4) (5)
Total Manuf. Manuf. auto Manuf. other Non-manuf.

Panel A: Just-identified IV

4 robots 0.0867 -0.1752 -2.8090** -0.4526* 0.4655**
(0.139) (0.192) (1.189) (0.247) (0.220)

Panel B: IV without direct neighbors

4 robots -0.0189 -0.3999*** -3.1361*** -0.6731*** 0.4088*
(0.122) (0.148) (1.144) (0.205) (0.209)

Panel C: IV without members of the European Monetary Union

4 robots -0.0025 -0.3423** -3.1806** -0.5887*** 0.4051*
(0.117) (0.157) (1.250) (0.217) (0.210)

Panel D: Cross-walk

4 robots 0.0043 -0.1601 -1.4099* -0.3886*** 0.2252
(0.093) (0.101) (0.722) (0.131) (0.147)

Panel E: West Germany

4 robots -0.0223 -0.4147** -3.7743*** -0.6879*** 0.4178**
(0.123) (0.164) (1.188) (0.230) (0.199)

Panel F: Federal state dummies

4 robots -0.0528 -0.4166*** -3.2837*** -0.6831*** 0.3625*
(0.138) (0.153) (1.243) (0.206) (0.218)

Notes: This table presents robustness checks for the baseline specification as of Panel A in Table 2. Panels A-C present variants of the IV estimation: a just-identified rather than

an overidentified IV, an overidentified IV but excluding direct neighbors from the instrument group (i.e. France), and excluding members of the European Monetary Union (i.e.

France, Spain, Italy, Finland). In Panel D, the robustness of the results with regard to the cross-walk between ISIC Rev. 4 and NACE Rev. 1 industries - which was necessary to

link the data on robots with German labor market data - is checked. We construct a reverse cross-walk assigning one of the 25 ISIC codes to each of the 73 NACE codes (for more

details see Appendix A), and recalculate the local robot exposure. Panels E und F perform the regressions for West Germany only and include federal state dummies instead of

broad regional dummies, respectively. Standard errors clustered at the level of 50 aggregate labour market regions in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.
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Table A.9: Robot exposure and individual employment outcomes, detailed version.

OLS, period 1994-2014 (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 3.3602*** 2.1265*** 0.7573 0.6399* 0.6016 0.9988*
(0.856) (0.660) (0.579) (0.377) (0.369) (0.582)

∆ net exports / wagebill in % 0.8422*** 0.8541***
(0.125) (0.133)

∆ ICT equipment in eper worker 0.0323 0.0330
(0.029) (0.029)

dummy, 1=female -917.7947*** -648.8021*** -671.4804*** -628.9431*** -624.7951*** -612.5067***
(23.071) (22.496) (21.081) (19.595) (19.552) (20.296)

dummy, 1=foreign -736.1391*** -626.2524*** -655.2834*** -637.9227*** -636.5159*** -659.8171***
(24.746) (21.813) (22.444) (20.167) (20.358) (20.149)

dummy, 1=age 35-44 yrs -161.1827*** -265.7044*** -251.3286*** -277.1321*** -276.6233*** -267.9716***
(14.237) (14.974) (13.569) (13.655) (13.651) (14.680)

dummy, 1=low skilled -144.0824*** -187.8435*** -154.1180*** -149.6269*** -149.7873***
(14.118) (12.944) (10.737) (10.471) (11.206)

dummy, 1=high skilled -282.5842*** -285.7575*** -340.4808*** -333.1758*** -339.1940***
(20.082) (17.736) (16.001) (15.696) (16.912)

dummy, 1=tenure 5-9 yrs 93.4181*** 60.6774*** 103.6687*** 101.4863*** 104.6909***
(12.772) (11.246) (8.061) (7.985) (8.512)

dummy, 1=tenure ≥10 yrs 218.9896*** 167.2056*** 213.6360*** 210.4657*** 236.0762***
(17.031) (15.236) (13.607) (13.443) (11.194)

log base year earnings 715.5460*** 538.2000*** 616.6627*** 613.8873*** 605.0080***
(24.029) (22.293) (20.471) (20.120) (20.664)

dummy, 1=plant size 10-99 443.8309*** 425.5094*** 424.0372*** 425.1091***
(23.350) (21.989) (21.627) (21.529)

dummy, 1=plant size 100-499 657.3304*** 628.5894*** 627.1175*** 626.2540***
(26.112) (23.980) (23.545) (23.429)

dummy, 1=plant size 500-999 759.6757*** 708.0179*** 708.9422*** 711.1334***
(29.240) (27.516) (27.090) (27.119)

dummy, 1=plant size 1,000-9,999 889.5952*** 813.9533*** 814.3005*** 813.7919***
(33.569) (30.796) (29.862) (30.277)

dummy, 1=plant size ≥10,000 863.5093*** 771.4514*** 754.3875*** 792.8549***
(55.860) (50.933) (50.387) (72.047)

dummy, 1=consumer goods -221.3766*** -181.8988*** -188.2315***
(30.985) (33.304) (36.371)

dummy, 1=industrial goods 53.5966** 47.8951* 48.4795*
(25.080) (25.337) (26.126)

dummy, 1=capital goods 120.0419*** 124.9539*** 128.5595***
(22.648) (21.858) (23.082)

constant 6267.0989*** -1266.3391*** -1.4563 -842.3314*** -831.6840*** -765.9009***
(28.385) (251.717) (229.138) (209.701) (205.595) (212.003)

federal state dummies No No No Yes Yes Yes
drop automotive industries No No No No No Yes

R2 0.056 0.078 0.089 0.095 0.096 0.089

Notes: Based on 993,184 workers. The outcome variable is the number of days employed, cumulated over the twenty years following the base year. Standard errors, clustered

by industry x federal state in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.
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Table A.10: Robot exposure and individual employment outcomes, detailed version.

2SLS, period 1994-2014 (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 3.5591*** 2.4035*** 1.1025* 0.9758*** 0.8003** 1.1534*
(0.848) (0.665) (0.602) (0.352) (0.349) (0.596)

∆ net exports / wagebill in % 0.5644*** 0.7051***
(0.168) (0.169)

∆ ICT equipment in eper worker 0.0279 0.0371
(0.031) (0.029)

dummy, 1=female -916.3624*** -647.6965*** -670.1007*** -627.0416*** -624.8930*** -612.3579***
(22.888) (22.394) (21.051) (19.530) (19.590) (20.305)

dummy, 1=foreign -736.4797*** -626.8389*** -655.7479*** -638.5468*** -637.3995*** -660.5146***
(24.689) (21.746) (22.393) (20.076) (20.273) (20.114)

dummy, 1=age 35-44 yrs -161.0488*** -265.0483*** -251.1314*** -276.9416*** -276.6659*** -267.9559***
(14.207) (14.914) (13.564) (13.643) (13.657) (14.685)

dummy, 1=low skilled -144.0167*** -187.7218*** -154.4592*** -151.2735*** -150.8625***
(14.121) (12.961) (10.734) (10.547) (11.252)

dummy, 1=high skilled -280.7540*** -283.5540*** -338.0439*** -334.2656*** -340.0433***
(19.939) (17.678) (15.849) (15.657) (16.912)

dummy, 1=tenure 5-9 yrs 92.8145*** 60.6728*** 103.7963*** 102.2399*** 104.9934***
(12.778) (11.248) (8.027) (7.997) (8.527)

dummy, 1=tenure ≥10 yrs 217.5659*** 167.1306*** 213.7207*** 211.5353*** 236.7164***
(17.117) (15.230) (13.580) (13.497) (11.232)

log base year earnings 713.1527*** 538.3001*** 616.9674*** 615.2080*** 606.0764***
(24.026) (22.196) (20.387) (20.148) (20.671)

dummy, 1=plant size 10-99 444.0151*** 425.8716*** 424.6279*** 425.3802***
(23.382) (21.977) (21.721) (21.560)

dummy, 1=plant size 100-499 657.0994*** 628.6551*** 627.6092*** 626.3821***
(26.144) (23.953) (23.685) (23.503)

dummy, 1=plant size 500-999 758.8889*** 707.6903*** 708.6290*** 710.8671***
(29.360) (27.495) (27.208) (27.202)

dummy, 1=plant size 1,000-9,999 885.5871*** 810.8296*** 812.5834*** 812.7519***
(34.190) (30.742) (30.106) (30.380)

dummy, 1=plant size ≥10,000 843.6919*** 753.6554*** 750.1966*** 794.0963***
(58.190) (49.725) (50.370) (72.617)

dummy, 1=consumer goods -227.3537*** -199.3871*** -199.5957***
(31.077) (32.933) (36.132)

dummy, 1=industrial goods 54.4785** 49.9778* 49.1561*
(25.172) (25.584) (26.256)

dummy, 1=capital goods 115.4287*** 121.5162*** 127.5449***
(22.936) (22.436) (23.273)

constant 6263.3545*** -1246.1240*** -6.3783 -847.1495*** -842.8232*** -778.2982***
(27.614) (251.852) (228.247) (209.247) (206.162) (212.061)

federal state dummies No No No Yes Yes Yes
drop automotive industries No No No No No Yes

R2 0.056 0.078 0.089 0.095 0.096 0.089

Notes: Based on 993,184 workers. The outcome variable is the number of days employed, cumulated over the twenty years following the base year. Standard errors, clustered

by industry x federal state in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.
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Table A.11: Robot exposure and individual employment outcomes – changes over time.

Dependent variable:
Number of days employed, cumulated over full observation period following the base year

[A] 2SLS, Stacked periods (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 1.7140*** 0.7109 0.7912* 0.7828** 0.7142** 0.4611
(0.545) (0.476) (0.454) (0.311) (0.309) (0.325)

∆ net exports / wagebill in % 0.2255* 0.3148***
(0.119) (0.114)

∆ ICT equipment in eper worker 0.0009 0.0156
(0.018) (0.016)

dummy, 1=base year 2004 247.7496*** 223.5501*** 224.7857***
(10.235) (8.581) (8.119)

[B] 2SLS, period 1994-2004 (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 1.1738* 0.4840 0.4258 0.4471 0.6048** 0.2679
(0.689) (0.537) (0.472) (0.315) (0.307) (0.360)

∆ net exports / wagebill in % 0.5780*** 0.6146***
(0.161) (0.161)

∆ ICT equipment in eper worker 0.0372 0.0376
(0.025) (0.025)

[C] 2SLS, period 2004-2014 (1) (2) (3) (4) (5) (6)

∆ robots per 1000 workers 1.6159*** -0.1806 0.0570 -0.0387 -0.4638 1.5189
(0.523) (0.462) (0.636) (0.644) (0.652) (0.983)

∆ net exports / wagebill in % 0.0772 0.1192
(0.082) (0.084)

∆ ICT equipment in eper worker 0.0080 0.0081
(0.011) (0.011)

age, gender, nationality dummies Yes Yes Yes Yes Yes Yes
education and tenure dummies No Yes Yes Yes Yes Yes
ln base yr earnings No Yes Yes Yes Yes Yes
plant size dummies No No Yes Yes Yes Yes
broad industry dummies No No No Yes Yes Yes
federal state dummies No No No Yes Yes Yes
drop automotive industries No No No No No Yes

Notes: Based on 2,677,990 (Panel A), 1,431,576 (Panel B), and 1,246,414 workers (Panel C). The outcome variable is the number of days employed, cumulated over the twenty

years following the base year. In panel A, federal state dummies are interacted with a time dummy. Standard errors, clustered by industry x federal state in parentheses. Levels

of significance: *** 1 %, ** 5 %, * 10 %.
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Table A.12: Robot exposure and individual employment outcomes – changes over time.

Dependent variable:
Number of days employed, cumulated over full observation period following the base year

[A] 2SLS, Stacked periods (1) (2) (3) (4) (5) (6)
Earnings Average Wages

∆ robots per 1000 workers -0.2737 -0.3735** -0.4452** -0.0430*** -0.0508*** -0.0502***
(0.179) (0.181) (0.220) (0.012) (0.012) (0.014)

∆ net exports / wagebill in % 0.1668*** 0.1994*** 0.0114*** 0.0133***
(0.054) (0.052) (0.004) (0.004)

∆ ICT equipment in eper worker 0.0274** 0.0311*** 0.0023*** 0.0023***
(0.011) (0.010) (0.001) (0.001)

[B] 2SLS, period 1994-2004 (1) (2) (3) (4) (5) (6)
Earnings Average Wages

∆ robots per 1000 workers -0.4420** -0.3922** -0.6908*** -0.0516*** -0.0500*** -0.0724***
(0.173) (0.170) (0.231) (0.012) (0.012) (0.015)

∆ net exports / wagebill in % 0.1387** 0.1271* 0.0015 0.0001
(0.070) (0.074) (0.005) (0.005)

∆ ICT equipment in eper worker -0.0026 -0.0024 -0.0012 -0.0012
(0.019) (0.018) (0.001) (0.001)

[C] 2SLS, period 2004-2014 (1) (2) (3) (4) (5) (6)
Earnings Average Wages

∆ robots per 1000 workers -1.1664*** -1.2008*** -0.5072 -0.1089*** -0.1043*** -0.0750***
(0.313) (0.307) (0.398) (0.026) (0.024) (0.026)

∆ net exports / wagebill in % 0.1324*** 0.1685*** 0.0109*** 0.0138***
(0.044) (0.047) (0.003) (0.004)

∆ ICT equipment in eper worker 0.0330*** 0.0319*** 0.0030*** 0.0029***
(0.009) (0.008) (0.001) (0.001)

age, gender, nationality dummies Yes Yes Yes Yes Yes Yes
education and tenure dummies Yes Yes Yes Yes Yes Yes
ln base yr earnings Yes Yes Yes Yes Yes Yes
plant size dummies Yes Yes Yes Yes Yes Yes
broad industry dummies Yes Yes Yes Yes Yes Yes
federal state dummies Yes Yes Yes Yes Yes Yes
drop automotive industries No No Yes No No Yes

Notes: Based on 2,677,990 (Panel A), 1,431,576 (Panel B), and 1,246,414 workers (Panel C). The outcome variables are 100 x earnings normalized by earnings in the base year and

cumulated over the twenty years following the base year (columns 1-3) and 100 x log average wages over the twenty years following the base year (columns 4-6). In panel A,

federal state dummies are interacted with a time dummy. Standard errors, clustered by industry x federal state in parentheses. Levels of significance: *** 1 %, ** 5 %, * 10 %.

57

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

